scholarly journals The Effect of Fasting Ramadhan on Malondialdehyde Levels Stress Oxidative Paramater in Obese Patient

Author(s):  
Septi Nina Maria Ginting

Obesity induces the formation of reactive oxygen species (ROS) which is produce oxidative stress that is involved in various pathological processes such as malondialdehyde (MDA) which is a highly toxic molecule. In Indonesia, Muslims are fasting for 13-14 hours during Ramadhan. Researchers interested in conducting research on the effect of fasting Ramadhan on oxidative stress (MDA levels) in individuals with obesity. This research is a prospective cohort. The study was held on  March –  May 2019 at Outpatient Clinic Endocrinology of RSUP. H. Adam Malik Medan with the approval of the FK  USU Research Ethics Commission and according to the criteria of inclusion and exclusion. The Data is analyzed by using the SPPS program where p < 0.05 is considered significant. The results of the study obtained a meaningful decline in the level of MDA before and after the fasting of Ramadhan (p < 0.001). The median rate of MDA before Ramadhan was 4.88 nmol/ml (1.68-101,5 nmol/ml) and after Ramadhan fasting the median rate of MDA became 3.96 nmol/ml (0.97-92,20 nmol/ml). There was decreased of oxidative stress parameter MDA levels after Ramadhan fasting in obese patients.

2018 ◽  
Vol 69 (8) ◽  
pp. 2172-2176
Author(s):  
Catalin Victor Sfarti ◽  
Alin Ciobica ◽  
Carol Stanciu ◽  
Gheorghe G. Balan ◽  
Irina Garleanu ◽  
...  

Choledocholithiasis may cause biliary obstruction which leads to hepatocellular injury. Oxidative stress has been proposed as a possible mechanism involved in this disorder. This study evaluates the oxidative stress burden in patients with choledocholithiasis and secondary cholestasis, before and after endoscopic sphincterotomy. Experimental part: Patients diagnosed with choledocholithiasis and secondary extrahepatic cholestasis were included in the study between January 1st 2016 and October 31st 2016. In all patients oxidative stress markers were collected within 2 hours before and 48 hours after therapeutic ERCP. Selected markers were superoxide dismutase (SOD), glutathione peroxidase (GPX) and malondialdehyde (MDA). The results were compared to those from a group of 40 healthy subjects. Significantly lower concentrations of SOD (p = 0.03) and GPX (p [ 0.0001) activities, associated with an increased level of MDA level (p [ 0.0001) were shown in patients before biliary clearance compared with the healthy control group. After ERCP the only oxidative stress parameter which showed improvement was the SOD specific activity (p = 0.037). This study shows that extrahepatic cholestasis secondary to choledocholithiasis is associated with increased oxidative stress status. After biliary clearance one oxidative stress marker was significantly improved (SOD), suggesting a possible antioxidant effect of such procedure.


2015 ◽  
Vol 59 (4) ◽  
pp. 557-562 ◽  
Author(s):  
Katarzyna Ognik ◽  
Krzysztof Patkowski ◽  
Tomasz Gruszecki ◽  
Krzysztof Kostro

Abstract The aim of the study was to determine the effect of the perinatal period on redox status indicators in the blood of ewes before and after lambing and during lactation. The study was performed on 12 ewes of the synthetic SCP line. Blood for testing of redox parameters was collected seven times: before pregnancy, 1.5 months and 24 h before lambing, 2 and 24 h after lambing, and in the fourth and eighth weeks of lactation. The following blood indices were determined by spectrophotometry: lipid peroxides, malondialdehyde, superoxide dismutase, catalase, plasma total antioxidant capacity, uric acid, urea, bilirubin, and creatinine. The tests showed that during the perinatal period reactions are generated which lead to oxidative stress. Oxidative stress in pregnant ewes was found to increase during the period before lambing and may persist even up to weeks 4-8 of lactation.


2020 ◽  
Vol 21 (20) ◽  
pp. 7433 ◽  
Author(s):  
Tsanko Gechev ◽  
Veselin Petrov

Abiotic stresses cause plant growth inhibition, damage, and in the most severe cases, cell death, resulting in major crop yield losses worldwide. Many abiotic stresses lead also to oxidative stress. Recent genetic and genomics studies have revealed highly complex and integrated gene networks which are responsible for stress adaptation. Here we summarize the main findings of the papers published in the Special Issue “ROS and Abiotic Stress in Plants”, providing a global picture of the link between reactive oxygen species and various abiotic stresses such as acid toxicity, drought, heat, heavy metals, osmotic stress, oxidative stress, and salinity.


2020 ◽  
pp. S541-S553
Author(s):  
I DOVINOVA ◽  
M KVANDOVA ◽  
P BALIS ◽  
L GRESOVA ◽  
M MAJZUNOVA ◽  
...  

Reactive oxygen species are an important element of redox regulation in cells and tissues. During physiological processes, molecules undergo chemical changes caused by reduction and oxidation reactions. Free radicals are involved in interactions with other molecules, leading to oxidative stress. Oxidative stress works two ways depending on the levels of oxidizing agents and products. Excessive action of oxidizing agents damages biomolecules, while a moderate physiological level of oxidative stress (oxidative eustress) is necessary to control life processes through redox signaling required for normal cellular operation. High levels of reactive oxygen species (ROS) mediate pathological changes. Oxidative stress helps to regulate cellular phenotypes in physiological and pathological conditions. Nrf2 (nuclear factor erythroid 2-related factor 2, NFE2L2) transcription factor functions as a target nuclear receptor against oxidative stress and is a key factor in redox regulation in hypertension and cardiovascular disease. Nrf2 mediates transcriptional regulation of a variety of target genes. The Keap1-Nrf2-ARE system regulates many detoxification and antioxidant enzymes in cells after the exposure to reactive oxygen species and electrophiles. Activation of Nrf2/ARE signaling is differentially regulated during acute and chronic stress. Keap1 normally maintains Nrf2 in the cytosol and stimulates its degradation through ubiquitination. During acute oxidative stress, oxidized molecules modify the interaction of Nrf2 and Keap1, when Nrf2 is released from the cytoplasm into the nucleus where it binds to the antioxidant response element (ARE). This triggers the expression of antioxidant and detoxification genes. The consequence of long-term chronic oxidative stress is activation of glycogen synthase kinase 3β (GSK-3β) inhibiting Nrf2 activity and function. PPARγ (peroxisome proliferator-activated receptor gamma) is a nuclear receptor playing an important role in the management of cardiovascular diseases, hypertension and metabolic syndrome. PPARγ targeting of genes with peroxisome proliferator response element (PPRE) has led to the identification of several genes involved in lipid metabolism or oxidative stress. PPARγ stimulation is triggered by endogenous and exogenous ligands – agonists and it is involved in the activation of several cellular signaling pathways involved in oxidative stress response, such as the PI3K/Akt/NOS pathway. Nrf2 and PPARγ are linked together with their several activators and Nrf2/ARE and PPARγ/PPRE pathways can control several types of diseases.


2020 ◽  
Vol 25 (2) ◽  
pp. 76
Author(s):  
Eka Pratama Putri ◽  
Sri Rahayu Lestari ◽  
Abdul Gofur

Hyperglycemia conditions increase free radicals in the body that cause oxidative stress. Oxidative stress increase lipid peroxidation activity and reactive oxygen species (ROS). An antioxidant can prevent a free radical movement. The materials that contain potent antioxidants are black soybeans tempeh (BST) and purple sweet potatoes (PSP). The antioxidants in the BST are isoflavones with their derivates, and PSP is anthocyanins. This study aimed to determine the effect of BST and PSP extract on reactive oxygen species (ROS) and malondialdehyde (MDA) levels. In this study, rats were given a high-fat diet, 10% sucrose drink, and injected with multiple low-dose streptozotocin to induce T2DM. The animal's experiment divided into six groups: healthy rats, DM rats, DM rats + glibenclamide, DM rats + combination of BST and PSP in 3:1, 1:1, and 1:3 respectively. ROS levels were determined using the ELISA method and MDA levels were determined using spectrophotometer according to Thiobarbituric Acid (TBA) method. Our result suggests that the combination of BST and PSP significantly reduces ROS and MDA levels.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1367
Author(s):  
Iván Yánez-Ortiz ◽  
Jaime Catalán ◽  
Yentel Mateo-Otero ◽  
Marta Dordas-Perpinyà ◽  
Sabrina Gacem ◽  
...  

Jenny shows a large endometrial reaction after semen influx to the uterus with a large amount of polymorphonuclear neutrophils (PMN) migrating into the uterine lumen. PMN act as a sperm selection mechanism through phagocytosis and NETosis (DNA extrudes and, together with proteins, trap spermatozoa). While a reduced percentage of spermatozoa are phagocytosed by PMN, most are found to be attached to neutrophil extracellular traps (NETs). This selection process together with sperm metabolism produces a large amount of reactive oxygen species (ROS) that influence the reproductive success. The present study aimed to determine the extracellular ROS production in both sperm and PMN. With this purpose, (1) donkey sperm were exposed to reductive and oxidative stresses, through adding different concentrations of reduced glutathione (GSH) and hydrogen peroxide (H2O2), respectively; and (2) PMN were subjected to NETosis in the presence of the whole semen, sperm, seminal plasma (SP) or other activators such as formyl-methionyl-leucyl-phenylalanine (FMLP). Extracellular ROS production (measured as H2O2 levels) was determined with the Amplex® Red Hydrogen Peroxide/Peroxidase Assay Kit. Donkey sperm showed more resilience to oxidative stress than to the reductive one, and GSH treatments led to greater H2O2 extracellular production. Moreover, not only did SP appear to be the main inducer of NETosis in PMN, but it was also able to maintain the extracellular H2O2 levels produced by sperm and NETosis.


2010 ◽  
Vol 44 (3) ◽  
pp. 179-185 ◽  
Author(s):  
Jiazhong Sun ◽  
Yancheng Xu ◽  
Haohua Deng ◽  
Suxin Sun ◽  
Zhe Dai ◽  
...  

Hypoadiponectinemia and hyperresistinemia may be important in mediating signals from adipocytes to insulin-sensitive tissue and vasculature. However, the mechanism that mediates the aberrant production of adipokines remains poorly understood. In this study, we have investigated the effect of intermittent high glucose on the expression of adiponectin and resistin, and the production of 8-hydroxydeoxyguanosine (8-OHdG) and nitrotyrosine in the adipocytes, either in the presence or in the absence of Mn(III) tetrakis(4-benzoic acid) porphyrin chloride (MnTBAP) or thenoyltrifluoroacetone (TTFA). 3T3-L1 adipocytes were incubated for 72 h in media containing different glucose concentrations: 5 mmol/l, 20 mmol/l, 5 mmol/l alternating with 20 mmol/l glucose, with or without MnTBAP and TTFA. We measured the expression of resistin and adiponectin. The production of nitrotyrosine and 8-OHdG as oxidative stress parameter was measured. Both constant and intermittent high glucose significantly suppressed the expression and secretion of adiponectin, and increased expression and secretion of resistin in mature adipocytes compared to normal glucose conditions. However, these effects were significantly greater under intermittent high glucose conditions compared to constant high glucose. The levels of nitrotyrosine and 8-OHdG were significantly elevated under both intermittent and constant high glucose conditions, the effect being greater under intermittent high glucose. In addition, the antioxidants MnTBAP or TTFA reversed the aberrant production of adiponectin and resistin, as well as overproduction of nitrotyrosine and 8-OHdG in adipocytes induced by constant or intermittent high glucose. Intermittent high glucose exacerbates the aberrant production of adiponectin and resistin through reactive oxygen species overproduction at the mitochondrial transport chain level in adipocytes, indicating that glycemic variability has important pathological effects on the secretion of adipokines.


Biomedicines ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 168
Author(s):  
Alessio Metere ◽  
Claire E. Graves ◽  
Donatella Pietraforte ◽  
Giovanni Casella

High concentrations of free radicals are present in the blood of obese patients. Free radicals are associated with endothelial dysfunction, diabetes, and neoplastic transformation, all conditions that are closely related to obesity. The purpose of our study was to determine whether bariatric surgery modifies the production of free radicals in obese patients. In total, 20 patients with morbid obesity, who were candidates for laparoscopic sleeve gastrectomy (SG), and 18 controls were enrolled in the study. Oxidative stress was studied in obese subjects before and after sleeve gastrectomy. The evaluation of oxidative stress was carried out on blood samples using electron paramagnetic resonance, a refined spectroscopic technique used to identify and quantify the major free radicals, such as •OH, O2•, ONOO-, and NO. Oxidative stress was higher in subjects with morbid obesity prior to surgery, compared to the controls (CP• 9.9 ± 0.3 µM vs. 5.8 ± 0.2 µM). After SG, values decreased to levels comparable to those of controls (CP• 5.4 ± 0.2 µM). Further analysis identified O2• as the main free radical responsible for the oxidative stress. Obesity is associated with an increased blood concentration of free radicals. The normalization of free radicals after sleeve gastrectomy highlights another important benefit of this bariatric surgery technique.


Sign in / Sign up

Export Citation Format

Share Document