scholarly journals Physical Properties Analysis of Activated Carbon from Oil Palm Empty Fruit Bunch Fiber on Methylene Blue Adsorption

2019 ◽  
Vol 1 (1) ◽  
pp. 67-73
Author(s):  
Rakhmawati Farma

The present research was conducted to analyze the physical properties of activated carbon from oil palm empty fruit bunch fiber (OPEFBF) to be applied as methylene blue adsorbent material. The OPEFBF was pre-carbonized at 280oC for 4 hours in vacuum, milled, and sieved to obtain the self-adhesive carbon grain (SACG) with a size less than 106 µm. The chemical activation was done using potassium hydroxide (KOH) with variations of 25%, 50%, and 75% from the SACG weight, stirred at 400 rpm for 24 hours at room temperature and pyrolyzed using microwave irradiations at the output power of 720 W for 15 minutes. The physical properties of activated carbon consist of two characterizations, namely microstructure evaluated with X-ray diffraction (XRD) and surface morphology evaluated with scanning electron microscopy (SEM). The XRD pattern showed that the activated carbon had a semi-crystalline structure characterized by the presence of (002) and (100) planes at the diffraction angle of 2θ about 21o and 43o, respectively. The surface morphology of activated carbon depicted that a higher percentage of KOH resulted in more pores were formed. Thus, the higher the surface area of activated carbon, the greater the adsorption of methylene blue. The highest methylene blue adsorption was obtained in the sample of 75% KOH with 87.73 mg/g. The energy dispersive X-ray showed that the increase of KOH percentage used enhanced the percentage of carbon element produced.

2019 ◽  
Vol 268 ◽  
pp. 06008
Author(s):  
Narisara Intarachandra ◽  
Sukum Siriworakon ◽  
Theerapol Sangmanee

The objectives of this research are to determine an optimum condition for producing the activated carbon from oil palm empty fruit bunch (OPEFB) and used as an adsorbent to remove methylene blue (MB) dye from aqueous solution. Chemical activation by phosphoric acid (H3PO4) was used as a procedure to modify OPEFB, in which in this study the carbonization and activation were done simultaneously. The concentrations of phosphoric acid were varied from 20-60% by weight and carbonization temperature and time were varied from 500-800oC and 30-60 minutes, respectively. It was found that among the conditions used, the best condition for producing activated carbon was obtained when using 60% H3PO4 and carbonized at 500oC for 30 minute. The produced activated carbon had a surface area of 362.5 m2/g and average pore size of 2.94 nm. Methylene blue and Iodine numbers were 13.62 and 356.46 mg/g, respectively, which were comparable to the results of commercial activated carbon; i.e. 6.96 and 778.7 mg/g. The optimum condition for the adsorption of MB from synthetic wastewater by produced activated carbon was found at pH 8-12 with equilibrium time of 4 hours. Results demonstrated that the equilibrium data was well fitted by Freundlich isotherm model with the isotherm constants KF of 7.75 mg/g and 1/n of 0.13.


2015 ◽  
Vol 74 (11) ◽  
Author(s):  
Riry Wirasnita ◽  
Tony Hadibarata ◽  
Abdull Rahim Mohd Yusoff ◽  
Zainab Mat Lazim

An oil palm empty fruit bunch-derived activated carbon has been successfully produced by chemical activation with zinc chloride and without chemical activation. The preparation was conducted in the tube furnace at 500oC for 1 h. The surface structure and active sites of activated carbons were characterized by means of Fourier transform infrared spectrometry and field emission scanning electron microscopy. The proximate analysis including moisture content, ash content, bulk density, pH, and pH at zero charge was conducted to identify the psychochemical properties of the adsorbent. The results showed that the zinc chloride-activated carbon has better characteristics compared to the carbon without chemical activation.  


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 378 ◽  
Author(s):  
Manuel Peñas-Garzón ◽  
Almudena Gómez-Avilés ◽  
Jorge Bedia ◽  
Juan Rodriguez ◽  
Carolina Belver

Several activated carbons (ACs) were prepared by chemical activation of lignin with different activating agents (FeCl3, ZnCl2, H3PO4 and KOH) and used for synthesizing TiO2/activated carbon heterostructures. These heterostructures were obtained by the combination of the activated carbons with a titania precursor using a solvothermal treatment. The synthesized materials were fully characterized (Wavelength-dispersive X-ray fluorescence (WDXRF), X-ray diffraction (XRD), Scanning electron microscopy (SEM), N2 adsorption-desorption, Fourier transform infrared (FTIR) and UV-visible diffuse reflectance spectra (UV-Vis DRS) and further used in the photodegradation of a target pharmaceutical compound (acetaminophen). All heterostructures were composed of anatase phase regardless of the activated carbon used, while the porous texture and surface chemistry depended on the chemical compound used to activate the lignin. Among all heterostructures studied, that obtained by FeCl3-activation yielded complete conversion of acetaminophen after 6 h of reaction under solar-simulated irradiation, also showing high conversion after successive cycles. Although the reaction rate was lower than the observed with bare TiO2, the heterostructure showed higher settling velocity, thus being considerably easier to recover from the reaction medium.


2020 ◽  
Vol 1010 ◽  
pp. 495-500
Author(s):  
Nurfarah Aini Mocktar ◽  
Mohammad Khairul Azhar Abdul Razab ◽  
An'amt Mohamed Noor ◽  
Nor Hakimin Abdullah

Acid hydrolysis method become one of the attention among researcher to produce high degree nanocellulose. Integration of sonication process was used to stir and mix particles in an element for different stages. This paper revealed the surface morphology and crystallinity index of two organic plant that were kenaf and oil palm nanocellulose. Characterization of the nanocellulose were identified by 2 techniques; (1) field emission scanning electron microscope (FESEM) that provides surface morphology and elemental information of the element, (2) x-ray diffraction (XRD) for phase identification of materials crystallinity. The result showed that the properties of nanocellulose increase after sonication method have been integrated.


2010 ◽  
Vol 129-131 ◽  
pp. 1151-1155 ◽  
Author(s):  
Xiao Juan Jin ◽  
Zhi Ming Yu ◽  
Zhe Ren ◽  
Xin Liu

Activated carbons were prepared through chemical activation of waste particle board (WPB) precursor using potassium hydroxide as the chemical agent. The effects of different parameters, such as chemical/WPB ratio, activation time and activation temperature on yield and the methylene blue adsorption capacity of activated carbon were investigated. Experimental results indicated that the optimum conditions were as follow: activation temperature 850°C, KOH(50% concentration)/ WPB 4.0, activation time 50 min. Amount of methylene blue adsorption, Iodine number and the yield of activated carbon prepared under optimum conditions were 15.0 mL/0.lg, 1213mg/g and 36.9%, respectively. Therefore, great potential exists for developing activated carbon products from waste wood, which will have the positive effects of reducing our landfill problem and gain attractive products.


2017 ◽  
Vol 751 ◽  
pp. 671-676 ◽  
Author(s):  
Tawan Chaiwon ◽  
Panatda Jannoey ◽  
Duangdao Channei

This research aimed to study the preparation of activated carbon from sugarcane bagasse waste. The sugarcane bagasse adsorbent was prepared by calcination at 600°C for 2 hours with the use of sulfuric acid (H2SO4) as a chemical activation. The adsorption surface possessed high specific surface area (838 m2/g) with mesoporous diameter. Factors explaining adsorption including adsorption isotherm, adsorption kinetic and adsorption mechanism were constructed from methylene blue adsorption experiments. It was found that the equilibrium data was best represented by Freundlich isotherm, showing multilayer coverage of dye molecules at the outer surface of adsorbent with a cooperative adsorption (physisorption and chemisorption). The kinetic of methylene blue adsorption was found to follow pseudo-second-order rate kinetic model, with a good correlation coefficient. This indicated that the overall rate of the dye adsorption process was controlled by the chemisorption process.


2018 ◽  
Vol 8 (2) ◽  
pp. 115
Author(s):  
Andi Ikhtiar Bakti ◽  
Paulus Lobo Gareso ◽  
Nurlaela Rauf

Activated carbon is produced from the coconut shell through physical and chemical activation. The pyrolysis method was employed in this research for physical activation at an optimum temperature of 600oC and 1,000oC, for chemical activation immersed using 10% Na2CO3 activating agent. This research has produced two samples, namely the physical activation of 1,000oC and the physics-chemical activation of Na2CO3. The X-Ray Diffraction (X-RD) spectrum of activated carbon in the samples 1,000oC and Na2CO3 contained silicate minerals, iron ore and quartz, respectively, and it showed the formation of carbon and graphite structures in the hkl (002) and (100) planes. Through Scherrer’s method, the average size of the Na2CO3 crystals sample is 15.03 nm and the sample crystal sample of 1,000oC is 54.53 nm; the size of the Nano-scale crystals was formed when the temperature increases ≥ 600° C. The X-RD resulted the percentage of elemental content carbon phase volume fraction (Fv) and impurity (I) in the 1,000oC sample of 75.61%, 24.39% and the Na2CO3 sample of 77.87%, 22.13% . These results indicate that the carbon content in chemical activation is much better than the physics activation. SEM results with magnification of 5,000x, it is very clear the porosity formed of the 10 μm picture size are 0.8 μm in Na2CO3 sample and 1.00 μm in 1,000oC sample.


Sign in / Sign up

Export Citation Format

Share Document