scholarly journals Chemical Compounds and Decomposition Process from Four Species Leaf Litter As a Source of Organic Matter Soil in Anggori Education Forest, Manokwari

2020 ◽  
Vol 3 (02) ◽  
pp. 60-67
Author(s):  
Aditya Rahmadaniarti ◽  
Wolfram Y. Mofu

Decomposition is a simple change of physical and chemical processes by soil microorganisms—the rate of decomposition process influenced by climate and litter quality factors. Litter content of chemical compounds is essential to determine the litter's quality so that it can be estimated the decomposition process. Leaves litter of Magnolia tsiampacca, Intsia bijuga, Cinnamomum cullilawan, and Aglaia sp., were collected and analyzed for their chemical compounds. Based on lignin and nitrogen content (L/N) value, Cinnamomum cullilawan have the fastest decomposition process. On the contrary, Intsia bijuga has low litter quality, so that has the slowest decomposition process. However, it has the lowest lignin content and high polyphenol content. Our research found that four observed species were able to be used as sources of soil organic matter, although the litter quality is relatively low.

Author(s):  
Amita M Watkar ◽  

Soil, itself means Soul of Infinite Life. Soil is the naturally occurring unconsolidated or loose covering on the earth’s surface. Physical properties depend upon the amount, size, shape, arrangement, and mineral composition of soil particles. It also depends on the organic matter content and pore spaces. Chemical properties depend on the Inorganic and organic matter present in the soil. Soils are the essential components of the environment and foundation resources for nearly all types of land use, besides being the most important component of sustainable agriculture. Therefore, assessment of soil quality and its direction of change with time is an ideal and primary indicator of sustainable agricultural land management. Soil quality indicators refer to measurable soil attributes that influence the capacity of a soil to function, within the limits imposed by the ecosystem, to preserve biological productivity and environmental quality and promote plant, animal and human health. The present study is to assess these soil attributes such as physical and chemical properties season-wise.


2004 ◽  
Vol 35 (9) ◽  
pp. 1015-1024 ◽  
Author(s):  
Anja Miltner ◽  
Hans-Hermann Richnow ◽  
Frank-Dieter Kopinke ◽  
Matthias Kästner

2007 ◽  
Vol 37 (1-2) ◽  
pp. 72-80 ◽  
Author(s):  
Jan Frouz ◽  
Dana Elhottová ◽  
Václav Pižl ◽  
Karel Tajovský ◽  
Monika Šourková ◽  
...  

Soil Research ◽  
2011 ◽  
Vol 49 (4) ◽  
pp. 287 ◽  
Author(s):  
V. Gonzalez-Quiñones ◽  
E. A. Stockdale ◽  
N. C. Banning ◽  
F. C. Hoyle ◽  
Y. Sawada ◽  
...  

Since 1970, measurement of the soil microbial biomass (SMB) has been widely adopted as a relatively simple means of assessing the impact of environmental and anthropogenic change on soil microorganisms. The SMB is living and dynamic, and its activity is responsible for the regulation of organic matter transformations and associated energy and nutrient cycling in soil. At a gross level, an increase in SMB is considered beneficial, while a decline in SMB may be considered detrimental if this leads to a decline in biological function. However, absolute SMB values are more difficult to interpret. Target or reference values of SMB are needed for soil quality assessments and to allow ameliorative action to be taken at an appropriate time. However, critical values have not yet been successfully identified for SMB. This paper provides a conceptual framework which outlines how SMB values could be interpreted and measured, with examples provided within an Australian context.


2014 ◽  
Vol 7 (1) ◽  
pp. 815-870 ◽  
Author(s):  
W. J. Riley ◽  
F. M. Maggi ◽  
M. Kleber ◽  
M. S. Torn ◽  
J. Y. Tang ◽  
...  

Abstract. Accurate representation of soil organic matter (SOM) dynamics in Earth System Models is critical for future climate prediction, yet large uncertainties exist regarding how, and to what extent, the suite of proposed relevant mechanisms should be included. To investigate how various mechanisms interact to influence SOM storage and dynamics, we developed a SOM reaction network integrated in a one-dimensional, multi-phase, and multi-component reactive transport solver. The model includes representations of bacterial and fungal activity, multiple archetypal polymeric and monomeric carbon substrate groups, aqueous chemistry, aqueous advection and diffusion, gaseous diffusion, and adsorption (and protection) and desorption from the soil mineral phase. The model predictions reasonably matched observed depth-resolved SOM and dissolved organic carbon (DOC) stocks in grassland ecosystems as well as lignin content and fungi to aerobic bacteria ratios. We performed a suite of sensitivity analyses under equilibrium and dynamic conditions to examine the role of dynamic sorption, microbial assimilation rates, and carbon inputs. To our knowledge, observations do not exist to fully test such a complicated model structure or to test the hypotheses used to explain observations of substantial storage of very old SOM below the rooting depth. Nevertheless, we demonstrated that a reasonable combination of sorption parameters, microbial biomass and necromass dynamics, and advective transport can match observations without resorting to an arbitrary depth-dependent decline in SOM turnover rates, as is often done. We conclude that, contrary to assertions derived from existing turnover time based model formulations, observed carbon content and δ14C vertical profiles are consistent with a representation of SOM dynamics consisting of (1) carbon compounds without designated intrinsic turnover times, (2) vertical aqueous transport, and (3) dynamic protection on mineral surfaces.


2016 ◽  
Vol 13 (1) ◽  
pp. 1-6
Author(s):  
Baghdad Science Journal

Soil invertebrates community an important role as part of essential food chain and responsible for the decomposition in the soil, helps soil aeration , nutrients recycling and increase agricultural production by providing the essential elements necessary for photosynthesis and energy flow in ecosystems.The aim of the present study was to investigate the soil invertebrates community in one of the date palms plantation in Aljaderia district South of Baghdad, , and their relationships with some physical and chemical properties of the soil , as Five randomly distributed replicates of soil samples were collected monthly. Invertebrates samples were sorted from the soil with two methods, direct method to isolate large invertebrates and indirectly to isolate small invertebrates using wet funnel method. The study also included the determination of physical and chemical factors of the soil (Temperature, Salinity, pH, Organic matter, Humidity, In addition to the soil texture).Monthly fluctuations in physical and chemical characteristics of the soil and the total invertebrates community study site were determined. Significant correlations the of the invertebrates community and each of temperature, organic matter, and humidity were observed. The study revealed that the temperature of the soil ranged between 5 to 25 C0 , The salinity concentration ranged between 1.1-1.9 ‰, The pH values ranged between 7.3 to 7.8 and the percentage of soil moisture ranged between 15 - 25% , Soil samples were composed of 44.6 % Clay, 19.7% Silt and 35.5% Sand.A total of 4625 individuals of soil invertebrates belonging to 16 taxa were sorted , within which the adult and larval insects were the most abundant, and from them 1283 individuals were sorted , represented 28% of the total numbers, followed by Isopoda , which 1030 individuals of them were sorted, In addition to Nematode, Oligochaetes Annelids family Enchytraeidae, and Earthworms family Lumbricida, Species of Chilopoda, Diplopoda, mites, land snails and slugs. The highest total individual number were recorded recorded durim moderate temperature months, February, March and April amounted to 838, 801 and 813 individuals, respectively.A significant correlation was mated between total number of soil invertebrates and each of temperature, organic matter and humidity. The significant difference in means was calculated according to LSD test.


Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 45
Author(s):  
Magdalena Mititelu ◽  
Elena Moroșan ◽  
Anca Cecilia Nicoară ◽  
Ana Andreea Secăreanu ◽  
Adina Magdalena Musuc ◽  
...  

Nowadays, the use of marine by-products as precursor materials has gained great interest in the extraction and production of chemical compounds with suitable properties and possible pharmaceutical applications. The present paper presents the development of a new immediate release tablet containing calcium lactate obtained from Black Sea mussel shells. Compared with other calcium salts, calcium lactate has good solubility and bioavailability. In the pharmaceutical preparations, calcium lactate was extensively utilized as a calcium source for preventing and treating calcium deficiencies. The physical and chemical characteristics of synthesized calcium lactate were evaluated using Fourier Transform Infrared Spectroscopy, X-ray diffraction analysis and thermal analysis. Further, the various pharmacotechnical properties of the calcium lactate obtained from mussel shells were determined in comparison with an industrial used direct compressible Calcium lactate DC (PURACAL®). The obtained results suggest that mussel shell by-products are suitable for the development of chemical compounds with potential applications in the pharmaceutical domain.


2013 ◽  
Vol 62 (4) ◽  
pp. 445-452
Author(s):  
IZABELLA PISAREK ◽  
KATARZYNA GRATA

Soil microorganisms play an important role in the organic matter transformation process. The soil microorganisms also are in symbiotic relationship with plants. At the same time, soil microorganisms are sensitive to both anthropogenic and natural habitat changes. Particular characteristics of organic matter (the C:N relation, pH, the content the content of assimilated nutrients, the xenobiotics etc.) modify the biotic conditions of the soils. This particularly concerns the microorganisms which carry out the changes in the mineral and organic nitrogen compounds and the transformation of the external organic matter. The first aim of this work was to assess the influence of the sewage sediments and the manure on the phytosanitary potential of the soil environment. The second aim of this article was to estimate the number and activity of microorganisms which carry out the transformation of carbon and nitrogen compounds. This work showed the stimulating effect of the external organic matter both on the number and on the activity of most of the physiological groups. The manure mainly stimulated ammonificators, amylolitic microorganisms and Azotobacter sp. The sewage sediments mainly stimulated ammonificators, nitrifiers of I phase and cellulolytic microorganisms. The statistically significant impact of the physio-chemical soil habitat on the biological activity of the analyzed groups of microbes was also noted.


2015 ◽  
Vol 21 (9) ◽  
pp. 3200-3209 ◽  
Author(s):  
Michael J. Castellano ◽  
Kevin E. Mueller ◽  
Daniel C. Olk ◽  
John E. Sawyer ◽  
Johan Six

Sign in / Sign up

Export Citation Format

Share Document