scholarly journals THE PROTECTIVE EFFECTS OF RED BEETROOT (Beta vulgaris L.) AGAINST OXIDATIVE STRESS IN RATS INDUCED BY HIGH FAT AND FRUCTOSE DIET

2021 ◽  
Vol 3 (2) ◽  
pp. 62-71
Author(s):  
Dianandha Septiana Rubi ◽  
Abrory Agus Cahya Pramana ◽  
Sunarti Sunarti

Background: One of consequence high-fat and fructose diet is oxidative stress. Consumption of antioxidants from red beetroot may increase antioxidant defense.Objectives: This study aimed to evaluate red beetroot administration on improving antioxidant defense in rats induced high fat and fructose diet.Methods: A total 20 male Wistar rats were divided into 4 groups: 1) normal control group (N), received standard diet; 2) High fat and fructose diet (HF), received high fat and fructose diet (HFFD); 8 weeks induction with HFFD and received 9g red beetroot (BA); and combination of HFFD and 9g of red beetroot from beginning of the study (HFBA). At the end of the study the levels of circulatory oxidized LDL (ox-LDL) were determined using enzyme-linked immunosorbent assay (ELISA) method. Superoxide dismutase 2 (SOD2) and catalase (CAT) gene expressions were determined by quantitative polymerase chain reaction (qPCR) method.Results: Induction HFFD increased the levels of circulatory ox-LDL levels compared to normal control (10.00±0.29 vs 12.69±0.57). Administration of red beetroot for 6 weeks and combination HFFD with red beetroot during the study significantly decreased ox-LDL levels compared to high fat and fructose group (12.69±0.57 vs 9.66±0.46) and (12.69±0.57 vs 8.59±0.18), respectively. The decreased circulatory ox-LDL levels were found negatively correlated with upregulation SOD2 (r=-0.548; P=0.012) and CAT (r=-0.460; P=0.041) gene expression in the liver tissues.Conclusion: Administration of red beetroot may ameliorate oxidative stress in rats induced high-fat and fructose diet through increasing antioxidant defense. 

2020 ◽  
Vol 8 (3) ◽  
pp. 889-902
Author(s):  
Devi Elvina Rachma ◽  
Retno Murwani ◽  
Achmad Zulfa Juniarto

The antioxidant activity of Nothopanax scutellarius (Burm. f.) Merr, an edible plant, can prevent oxidative stress in metabolic syndrome (MetS). Thus, our research aimed to study the effect of dietary inclusion of fresh or boiled N. scutellarius on body weight and biochemical markers of Wistar rats with MetS. Twenty-four male Wistar rats were divided randomly into four groups, i.e., normal control group, high-fat-high-fructose diet (HFFD) group, fresh N. scutellarius (FNs) group, and boiled N. scutellarius (BNs) group. The normal control group was fed only a standard diet during the entire experiment. High-fat and high-fructose (HFHFr) diet accompanied with 20% fructose in drinking water to induce MetS was given to the HFFD, FNs, and BNs groups for 29 days. This was followed by a 29-day intervention diet in which standard normal diet, fresh N. scutellarius-containing standard diet, and boiled N. scutellarius-containing standard diet were given to the HFFD, FNs, and BNs groups, respectively. HFHFr diet significantly (p<0.05) raised fasting blood glucose (FBG), serum triglyceride, total cholesterol, LDL-cholesterol, and malondialdehyde (MDA), and significantly (p<0.05) reduced HDL-cholesterol. After 29 days on the intervention diet, serum triglycerides, total cholesterol, and LDL-cholesterol levels were found to decrease, and HDL-cholesterol levels were found to increase significantly (p<0.05). Thus, it can be concluded that dietary intake of N. scutellarius for 29 days can improve MetS components, i.e., FBG, serum lipid profile, and MDA, similar to those seen in rats on a normal control diet.


2021 ◽  
Author(s):  
Mojtaba Rustaei ◽  
Reihaneh Sadeghian ◽  
Iraj Salehi ◽  
Abdolrahman Sarihi ◽  
Siamak Shahidi ◽  
...  

Abstract Nowadays, high-fat foods are eaten in most societies, which causes memory impairment and anxiety through the oxidative stress pathway. Sesame oil (SO) has potential antioxidant properties. Therefore, the effects of sesame oil on memory impairment and anxiety caused by a high-fat diet (HFD) in male rats were investigated. Eighty male Wistar rats were divided into eight groups (n = 10): control (standard diet; SD), the HFD, SD + SO (0.5, 1, or 2 ml/kg; once/day, gavage), and HFD + SO (0.5, 1, or 2 ml/kg; once/day, gavage) groups. All diets were given to the animals for three months. Finally, behavioral and oxidative stress parameters were measured. The step-through latency of retention test in SD + SO (0.5 or 1 ml/kg) groups increased more than the control group. Also, the Barnes test on training days revealed that the latency time to find the target hole increased in the HFD group compared with the control group. Moreover, the time spent on the open arms in the SD + SO (0.5 ml/kg) group improved remarkably than the control group. Total oxidant (TOS) level in the HFD + SO (0.5, 1, and 2 ml/kg) groups was lower than the HFD group. The level of total antioxidant capacity (TAC) in the SD + SO (2 ml/kg) group was higher than the SD + SO (0.5 ml/kg) group and the amount of thiol in the HFD group decreased compared with the control group. These findings suggest that the positive effects of SO on memory and anxiety are probably due to its antioxidant properties and the elimination of free radicals.


2012 ◽  
Vol 27 (11) ◽  
pp. 773-782 ◽  
Author(s):  
Paulo Roberto Bertoletto ◽  
Adauto Tsutomu Ikejiri ◽  
Frederico Somaio Neto ◽  
José Carlos Chaves ◽  
Roberto Teruya ◽  
...  

PURPOSE: To determine the profile of gene expressions associated with oxidative stress and thereby contribute to establish parameters about the role of enzyme clusters related to the ischemia/reperfusion intestinal injury. METHODS: Twelve male inbred mice (C57BL/6) were randomly assigned: Control Group (CG) submitted to anesthesia, laparotomy and observed by 120min; Ischemia/reperfusion Group (IRG) submitted to anesthesia, laparotomy, 60min of small bowel ischemia and 60min of reperfusion. A pool of six samples was submitted to the qPCR-RT protocol (six clusters) for mouse oxidative stress and antioxidant defense pathways. RESULTS: On the 84 genes investigated, 64 (76.2%) had statistic significant expression and 20 (23.8%) showed no statistical difference to the control group. From these 64 significantly expressed genes, 60 (93.7%) were up-regulated and 04 (6.3%) were down-regulated. From the group with no statistical significantly expression, 12 genes were up-regulated and 8 genes were down-regulated. Surprisingly, 37 (44.04%) showed a higher than threefold up-regulation and then arbitrarily the values was considered as a very significant. Thus, 37 genes (44.04%) were expressed very significantly up-regulated. The remained 47 (55.9%) genes were up-regulated less than three folds (35 genes - 41.6%) or down-regulated less than three folds (12 genes - 14.3%). CONCLUSION: The intestinal ischemia and reperfusion promote a global hyper-expression profile of six different clusters genes related to antioxidant defense and oxidative stress.


2021 ◽  
pp. 1-31
Author(s):  
Zahra Zalaqi ◽  
Farshad Ghazalian ◽  
Mohammad Javad Khodayar ◽  
Atefeh Raesi Vanani ◽  
Layasadat Khorsandi ◽  
...  

Abstract Obesity is often introduced as one of the metabolic disorders caused by imbalance between energy consumption and metabolisable energy intake. Experts in the field considered obesity as one of the robust risk factors for the life-style associated diseases. The present research examined interventional effects of marine chitosan (CS), swimming training (ST) and combination of CS and ST (CS+ST) in the mice fed with high fat diets (HFD). In this study, sample size was considered more than 3 in groups. Forty mice were randomly divided into 5 groups (n = 8 per group) including control group (received the standard diet), HFD group (received high fat food with 20% fat), HFD+CS group (treated with high fat food with 5% CS), HFD+ST group (treated with high fat diet and ST) and HFD+CS+ST group (treated with high fat food with 5% CS & ST). After 8 weeks the blood glucose, oxidative stress (OS), and lipid profile were measured. Results showed more efficiency of CS+ST in the control of body weight with the increased concentration of HDL-C, OS inhibition via enhancing the body antioxidant capacity in comparison to the ST or CS alone in obese mice. Moreover, lipid profile was improved in CS + ST-treated mice compared with HFD-treated mice, and OS inhibition correlated to the greater activities of the antioxidant enzyme, enhance the lipid oxidation, cholesterol and fatty acid homeostasis. The results suggested that a dietary intervention with a combined ST and CS can be a feasible supplementary for human prevention of obesity.


2020 ◽  
Vol 17 (3) ◽  
pp. 191-199
Author(s):  
Seval Yilmaz ◽  
Fatih Mehmet Kandemir ◽  
Emre Kaya ◽  
Mustafa Ozkaraca

Objective: This study aimed to detect hepatic oxidative damage caused by aflatoxin B1 (AFB1), as well as to examine how propolis protects against hepatotoxic effects of AFB1. Method: Rats were split into four groups as control group, AFB1 group, propolis group, AFB1+ propolis group. Results: There was significant increase in malondialdehyde (MDA) level and tumor suppressor protein (TP53) gene expression, Glutathione (GSH) level, Catalase (CAT) activity, CAT gene expression decreased in AFB1 group in blood. MDA level and Glutathione-S-Transferase (GST) activity, GST and TP53 gene expressions increased in AFB1 group, whereas GSH level and CAT activity alongside CAT gene expression decreased in liver. AFB1+propolis group showed significant decrease in MDA level, GST activity, TP53 and GST gene expressions, GSH level and CAT activity and CAT gene expression increased in liver compared to AFB1 group. Conclusion: These results suggest that propolis may potentially be natural agent that prevents AFB1- induced oxidative stress and hepatotoxicity.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Patricia Pleguezuelos ◽  
Marina Sibila ◽  
Raúl Cuadrado ◽  
Rosa López-Jiménez ◽  
Diego Pérez ◽  
...  

Abstract Background The objective of the present study was to explore the benefits of Porcine circovirus 2 (PCV-2) blanket vaccination in a sow herd on productive parameters, PCV-2 infection and immune status in sows and their progeny. For this purpose, 288 sows were distributed among four balanced experimental groups. One group remained as negative control group and the other three received 1 mL of PCV-2 Ingelvac Circoflex® intramuscularly at different productive cycle moments: before mating, mid gestation (42–49 days post-insemination) or late gestation (86–93 days post-insemination); phosphate buffered saline (PBS) was used as negative control item. Reproductive parameters from sows during gestation and body weight of their progeny from birth to weaning were recorded. Additionally, blood was collected from sows at each vaccination time and piglets at 3 weeks of age. Moreover, up to 4 placental umbilical cords (PUC) per sow were taken at peri-partum. Sera from sows and piglets were analysed for PCV-2 antibody detection using an enzyme-linked immunosorbent assay (ELISA). Sera from sows and PUC were tested to quantify viraemia using a real time quantitative polymerase chain reaction (qPCR) assay. Results Globally, results indicated that vaccinated sows showed heavier piglets at birth and at weaning, less cross-fostered piglets, lower viral load at farrowing as well as in PUC, and higher antibody levels at farrowing, compared to non-vaccinated ones. When all groups were compared among them, sows vaccinated at mid or late gestation had heavier piglets at birth than non-vaccinated sows, and lower proportion of PCV-2 positive PUC. Also, cross-fostering was less frequently practiced in sows vaccinated at pre-mating or mid gestation compared to non-vaccinated ones. Conclusions In conclusion, the present study points out that PCV-2 sow vaccination at different time points of their physiological status (mimicking blanket vaccination) offers benefits at production and serological and virological levels.


2020 ◽  
Vol 11 (1) ◽  
pp. 147-160
Author(s):  
Ranyah Shaker M. Labban ◽  
Hanan Alfawaz ◽  
Ahmed T. Almnaizel ◽  
Wail M. Hassan ◽  
Ramesa Shafi Bhat ◽  
...  

AbstractObesity and the brain are linked since the brain can control the weight of the body through its neurotransmitters. The aim of the present study was to investigate the effect of high-fat diet (HFD)-induced obesity on brain functioning through the measurement of brain glutamate, dopamine, and serotonin metabolic pools. In the present study, two groups of rats served as subjects. Group 1 was fed a normal diet and named as the lean group. Group 2 was fed an HFD for 4 weeks and named as the obese group. Markers of oxidative stress (malondialdehyde, glutathione, glutathione-s-transferase, and vitamin C), inflammatory cytokines (interleukin [IL]-6 and IL-12), and leptin along with a lipid profile (cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein levels) were measured in the serum. Neurotransmitters dopamine, serotonin, and glutamate were measured in brain tissue. Fecal samples were collected for observing changes in gut flora. In brain tissue, significantly high levels of dopamine and glutamate as well as significantly low levels of serotonin were found in the obese group compared to those in the lean group (P > 0.001) and were discussed in relation to the biochemical profile in the serum. It was also noted that the HFD affected bacterial gut composition in comparison to the control group with gram-positive cocci dominance in the control group compared to obese. The results of the present study confirm that obesity is linked to inflammation, oxidative stress, dyslipidemic processes, and altered brain neurotransmitter levels that can cause obesity-related neuropsychiatric complications.


2016 ◽  
Vol 33 (2) ◽  
pp. 171-181 ◽  
Author(s):  
Bing Xia ◽  
Kangcheng Chen ◽  
Yingnan Lv ◽  
Damin Huang ◽  
Jing Liu ◽  
...  

Objectives: Methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic derivative of manganese (Mn) and is used as an antiknock agent and octane enhancer in gasoline. In this article, we tested the oxidative stress and heat stress protein (Hsp) 70 levels of gasoline station attendants to explore potential plasma biomarkers. Furthermore, the dose–response relationship was also identified. Methods: A total of 144 workers, including 96 petrol fillers and 48 cashiers, participated in the study. Ambient concentrations of benzene, toluene, ethylbenzene, and xylene (BTEX) and Mn were monitored at nine filling stations. During the measuring process, the individual cumulative exposure index was calculated. Plasma oxidative stress and Hsp70 levels were also analysed using enzyme-linked immunosorbent assay. Results: The BTEX time-weighted average in office areas was significantly lower than in refuelling areas ( p < 0.05). In refuelling areas, the content of Mn ranged from 6.44 μg/m3 to 127.34 μg/m3, which was much higher than that in office areas (3.16–7.22 μg/m3; p < 0.05). Exposed workers had significantly different plasma oxidative stress indicators compared with the control group, respectively: superoxide dismutase (SOD), 39.18 ± 6.05 U/mL versus 52.84 ± 3.87 U/mL; glutathione peroxidase (GSH-Px), 186.07 ± 15.63 U versus 194.38 ± 10.42 U; and malondialdehyde (MDA), 1.68 ± 0.52 nmol/L versus 1.43 ± 0.64 nmol/L (in all comparisons, p < 0.05). Plasma Hsp70 level in the exposed group (2.77 ± 0.64 ng/mL) was significantly higher than in the control group (2.32 ± 0.87 ng/mL; p < 0.05). Furthermore, Hsp70 levels were inversely correlated with the activities of SOD ( r = −0.305) and GSH-Px ( r = −0.302) in the exposed group ( p < 0.05). Moreover, a positive correlation ( r = 0.653) was found between plasma Hsp70 levels and plasma MDA levels ( p < 0.05). Conclusion: Exposure to MMT-containing gasoline may result in increasing reactive oxygen stress among filling station attendants. Plasma Hsp70 levels could be used as a sensitive responsive biomarker for exposed workers.


2013 ◽  
Vol 304 (5) ◽  
pp. E495-E506 ◽  
Author(s):  
S. Keipert ◽  
M. Ost ◽  
A. Chadt ◽  
A. Voigt ◽  
V. Ayala ◽  
...  

Ectopic expression of uncoupling protein 1 (UCP1) in skeletal muscle (SM) mitochondria increases lifespan considerably in high-fat diet-fed UCP1 Tg mice compared with wild types (WT). To clarify the underlying mechanisms, we investigated substrate metabolism as well as oxidative stress damage and antioxidant defense in SM of low-fat- and high-fat-fed mice. Tg mice showed an increased protein expression of phosphorylated AMP-activated protein kinase, markers of lipid turnover (p-ACC, FAT/CD36), and an increased SM ex vivo fatty acid oxidation. Surprisingly, UCP1 Tg mice showed elevated lipid peroxidative protein modifications with no changes in glycoxidation or direct protein oxidation. This was paralleled by an induction of catalase and superoxide dismutase activity, an increased redox signaling (MAPK signaling pathway), and increased expression of stress-protective heat shock protein 25. We conclude that increased skeletal muscle mitochondrial uncoupling in vivo does not reduce the oxidative stress status in the muscle cell. Moreover, it increases lipid metabolism and reactive lipid-derived carbonyls. This stress induction in turn increases the endogenous antioxidant defense system and redox signaling. Altogether, our data argue for an adaptive role of reactive species as essential signaling molecules for health and longevity.


CNS Spectrums ◽  
2017 ◽  
Vol 24 (03) ◽  
pp. 333-337 ◽  
Author(s):  
Maiara Zeni-Graiff ◽  
Adiel C. Rios ◽  
Pawan K. Maurya ◽  
Lucas B. Rizzo ◽  
Sumit Sethi ◽  
...  

IntroductionOxidative stress has been documented in chronic schizophrenia and in the first episode of psychosis, but there are very little data on oxidative stress prior to the disease onset.ObjectiveThis work aimed to compare serum levels of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in young individuals at ultra-high risk (UHR) of developing psychosis with a comparison healthy control group (HC).MethodsThirteen UHR subjects and 29 age- and sex-matched healthy controls (HC) were enrolled in this study. Clinical assessment included the Comprehensive Assessment of At-Risk Mental States (CAARMS), the Semi-Structured Clinical Interview for DSM-IV Axis-I (SCID-I) or the Kiddie-SADS-Present and Lifetime Version (K-SADS-PL), and the Global Assessment of Functioning (GAF) scale. Activities of SOD and GPx were measured in serum by the spectrophotometric method using enzyme-linked immunosorbent assay kits.ResultsAfter adjusting for age and years of education, there was a significant lower activity of SOD and lower GPX activity in the UHR group compared to the healthy control group (rate ratio [RR]=0.330, 95% CI 0.187; 0.584, p&lt;0.001 and RR=0.509, 95% CI 0.323; 0.803, p=0.004, respectively). There were also positive correlations between GAF functioning scores and GPx and SOD activities.ConclusionOur results suggest that oxidative imbalances could be present prior to the onset of full-blown psychosis, including in at-risk stages. Future studies should replicate and expand these results.


Sign in / Sign up

Export Citation Format

Share Document