scholarly journals A Physical Model Study of the North Shore Wastewater Treatment Plant Pump Station

2021 ◽  
Author(s):  
Maryam Shahab

<div>Large scale water pumps with bell mouth intakes have been broadly used by municipal wastewater services to move sewage to wastewater treatment plants. Swirling of the flow when entering the suction bell of the pump intake can cause free-surface and/or sub-surface vortices, resulting in poor pump operation. In order to properly design, the wet well of sewage pump station both physical and numerical models are used to analyze the flow condition entering the pump intake and the associated flow pattern and potential vortex formation. In cooperation with WSP Canada Ltd., a physical modelling study of the First Narrows Sewage Pumping Station was conducted by the Ryerson research team at Ryerson University’s Centre of Urban Innovation Laboratory. During the physical model testing, uneven flow distributions including vortices were observed at the intake chamber under three pump-working conditions. To achieve an even flow distribution with minimal vortices, alternative slot designs at the entrance of the chamber were analyzed.</div><div>Additionally, a tapered design of the suction bell intake was tested for potential vortex formation. The results showed that a reduced area of the entrance slot could distribute the inflow evenly in the chamber. Moreover, no vortex formation around the tapered suction bell was found under (a) a low flow condition of 10 l/s at a water level -5.10 m below datum and (b) a cleaning cycle scenario of 16 l/s at a water level -4.9 m below the datum. However, there was observed water rotations at the backwall side. For tight and intense water rotations, it might cause vortex formation. This study has provided design changes that can smooth the flow and reduce vortices at the bell mouth intakes of the pump intake chamber.</div>

2021 ◽  
Author(s):  
Maryam Shahab

<div>Large scale water pumps with bell mouth intakes have been broadly used by municipal wastewater services to move sewage to wastewater treatment plants. Swirling of the flow when entering the suction bell of the pump intake can cause free-surface and/or sub-surface vortices, resulting in poor pump operation. In order to properly design, the wet well of sewage pump station both physical and numerical models are used to analyze the flow condition entering the pump intake and the associated flow pattern and potential vortex formation. In cooperation with WSP Canada Ltd., a physical modelling study of the First Narrows Sewage Pumping Station was conducted by the Ryerson research team at Ryerson University’s Centre of Urban Innovation Laboratory. During the physical model testing, uneven flow distributions including vortices were observed at the intake chamber under three pump-working conditions. To achieve an even flow distribution with minimal vortices, alternative slot designs at the entrance of the chamber were analyzed.</div><div>Additionally, a tapered design of the suction bell intake was tested for potential vortex formation. The results showed that a reduced area of the entrance slot could distribute the inflow evenly in the chamber. Moreover, no vortex formation around the tapered suction bell was found under (a) a low flow condition of 10 l/s at a water level -5.10 m below datum and (b) a cleaning cycle scenario of 16 l/s at a water level -4.9 m below the datum. However, there was observed water rotations at the backwall side. For tight and intense water rotations, it might cause vortex formation. This study has provided design changes that can smooth the flow and reduce vortices at the bell mouth intakes of the pump intake chamber.</div>


2020 ◽  
Vol 28 (9) ◽  
pp. 2027-2034
Author(s):  
Yue-jie SHU ◽  
◽  
Jun WU ◽  
Yuan-hang ZHOU ◽  
Yu-feng MA ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 458
Author(s):  
Drew C. Baird ◽  
Benjamin Abban ◽  
S. Michael Scurlock ◽  
Steven B. Abt ◽  
Christopher I. Thornton

While there are a wide range of design recommendations for using rock vanes and bendway weirs as streambank protection measures, no comprehensive, standard approach is currently available for design engineers to evaluate their hydraulic performance before construction. This study investigates using 2D numerical modeling as an option for predicting the hydraulic performance of rock vane and bendway weir structure designs for streambank protection. We used the Sedimentation and River Hydraulics (SRH)-2D depth-averaged numerical model to simulate flows around rock vane and bendway weir installations that were previously examined as part of a physical model study and that had water surface elevation and velocity observations. Overall, SRH-2D predicted the same general flow patterns as the physical model, but over- and underpredicted the flow velocity in some areas. These over- and underpredictions could be primarily attributed to the assumption of negligible vertical velocities. Nonetheless, the point differences between the predicted and observed velocities generally ranged from 15 to 25%, with some exceptions. The results showed that 2D numerical models could provide adequate insight into the hydraulic performance of rock vanes and bendway weirs. Accordingly, design guidance and implications of the study results are presented for design engineers.


2021 ◽  
Author(s):  
Maha Mdini ◽  
Takemasa Miyoshi ◽  
Shigenori Otsuka

&lt;p&gt;In the era of modern science, scientists have developed numerical models to predict and understand the weather and ocean phenomena based on fluid dynamics. While these models have shown high accuracy at kilometer scales, they are operated with massive computer resources because of their computational complexity.&amp;#160; In recent years, new approaches to solve these models based on machine learning have been put forward. The results suggested that it be possible to reduce the computational complexity by Neural Networks (NNs) instead of classical numerical simulations. In this project, we aim to shed light upon di&amp;#64256;erent ways to accelerating physical models using NNs. We test two approaches: Data-Driven Statistical Model (DDSM) and Hybrid Physical-Statistical Model (HPSM) and compare their performance to the classical Process-Driven Physical Model (PDPM). DDSM emulates the physical model by a NN. The HPSM, also known as super-resolution, uses a low-resolution version of the physical model and maps its outputs to the original high-resolution domain via a NN. To evaluate these two methods, we measured their accuracy and their computation time. Our results of idealized experiments with a quasi-geostrophic model [SO3] show that HPSM reduces the computation time by a factor of 3 and it is capable to predict the output of the physical model at high accuracy up to 9.25 days. The DDSM, however, reduces the computation time by a factor of 4 and can predict the physical model output with an acceptable accuracy only within 2 days. These &amp;#64257;rst results are promising and imply the possibility of bringing complex physical models into real time systems with lower-cost computer resources in the future.&lt;/p&gt;


Author(s):  
Weiwei Song ◽  
Xingqian Fu ◽  
Yong Pang ◽  
Dahao Song ◽  
Qing Xu ◽  
...  

With the rapid development of China, water pollution is still a serious problem despite implementation of control measures. Reasonable water environment management measures are very important for improving water quality and controlling eutrophication. In this study, the coupled models of hydrodynamics, water quality, and eutrophication were used to predict artificial Playground Lake water quality in the Zhenjiang, China. Recommended “unilateral” and “bilateral” river numerical models were constructed to simulate the water quality in the Playground Lake without or with water diversion by pump, sluice and push pump. Under “unilateral” and “bilateral” river layouts, total nitrogen and total phosphorus meet the landscape water requirement through water diversion. Tourist season in spring and summer and its suitable temperature result in heavier eutrophication, while winter is lighter. Under pumping condition, water quality and eutrophication of “unilateral” river is better than “bilateral” rivers. Under sluice diversion, the central landscape lake of “unilateral river” is not smooth, and water quality and eutrophication is inferior to the “bilateral”. When the water level exceeds the flood control level (4.1 m), priority 1 is launched to discharge water from the Playground Lake. During operation of playground, when water level is less than the minimum level (3.3 m), priority 2 is turned on for pumping diversion or sluice diversion to Playground Lake. After opening the Yangtze river diversion channel sluice, priority 3 is launched for sluice diversion to the Playground Lake. When the temperature is less than 15 °C, from 15 °C to 25 °C and higher than 25 °C, the water quality can be maintained for 15 days, 10 days and 7 days, respectively. Corresponding to the conditions of different priority levels, reasonable choices of scheduling measures under different conditions to improve the water quality and control eutrophication of the Playground Lake. This article is relevant for the environmental management of the artificial Playground Lake, and similar lakes elsewhere.


Author(s):  
Shuhong Liu ◽  
Yong Li ◽  
Xianwu Luo ◽  
Yulin Wu

It is known that the flow condition in the pump sump is very complicated, which usually performs as several types of vortex, water wave of free surface, vibration, noise, and etc. To make clear the flow condition experimentally and numerically is very important to develop the performance and operating stability of the pump station. As one of the projects with Hitachi Industries ltd. Co., Japan, the investigation experimentally on the internal flow condition of the pump sump has been carried out in Tsinghua University. In this paper, we introduce the simulation results, which can show more detail information near the intake of the pump sump. The simulation is focused on the area near the intake, together with the extension of up-stream and down-stream. The calculation research includes two parts: steady simulation and unsteady simulation by VOF model, which is provided by the commercial software of Fluent. Through the steady simulation, the distribution of free water surface (water height) near the intake, as well as the flow condition inside the intake, were obtained. Comparing with the experimental data, a good agreement was observed. After analyzing the unsteady calculation results by VOF, four stages of the development of air-entraining vortex, and the wave characteristic of free water surface, were obtained, which were in accord with the experiment visualizing.


2018 ◽  
Vol 31 ◽  
pp. 03001 ◽  
Author(s):  
Iskahar ◽  
Suripin ◽  
Isdiyana

Estuary of the river that leads to the reservoir has characteristics include: relatively flat, there is a change in the increase of wet cross-sectional area and backwater. The backwater will cause the flow velocity to be reduced, so that the grains of sediment with a certain diameter carried by the flow will settle in the estuary of the river. The purpose of this research is to know the distribution and sedimentation pattern at the river estuary that leads to the reservoir with the change of water level in the reservoir storage, so the solution can be found to remove / reduce sediment before entering the reservoir. The method used is the experimental, by making the physical model of the river estuary leading to the reservoir. This study expects a solution to reduce sedimentation, so that sedimentation can be removed / minimized before entering the reservoir. This research tries to apply bypass channel to reduce the sedimentation at the river estuary. Bypass channels can be applied to overcome sedimentation at the river estuary, but in order for the sediment to be removed optimally, it is necessary to modify the mouth of bypass channel and channel angle.


Sign in / Sign up

Export Citation Format

Share Document