scholarly journals The Effect of Building Aspect Ratio on Energy Efficiency: A Case Study for Multi-Unit Residential Buildings in Canada

Author(s):  
Philip McKeen ◽  
Alan S. Fung

This paper examines the energy consumption of varying aspect ratio in multi-unit residential buildings in Canadian cities. The aspect ratio of a building is one of the most important determinants of energy efficiency. It defines the building surface area by which heat is transferred between the interior and exterior environment. It also defines the amount of building area that is subject to solar gain. The extent to which this can be beneficial or detrimental depends on the aspect ratio and climate. This paper evaluates the relationship between the geometry of buildings and location to identify a design vernacular for energy-efficient designs across Canada.

2021 ◽  
Author(s):  
Philip McKeen ◽  
Alan S. Fung

This paper examines the energy consumption of varying aspect ratio in multi-unit residential buildings in Canadian cities. The aspect ratio of a building is one of the most important determinants of energy efficiency. It defines the building surface area by which heat is transferred between the interior and exterior environment. It also defines the amount of building area that is subject to solar gain. The extent to which this can be beneficial or detrimental depends on the aspect ratio and climate. This paper evaluates the relationship between the geometry of buildings and location to identify a design vernacular for energy-efficient designs across Canada.


2020 ◽  
Vol 13 (2) ◽  
pp. 90-96
Author(s):  
E.V. Nezhnikova ◽  
◽  
M.V Chernyaev ◽  

The article presents the problems of ensuring energy efficiency of housing construction in the Russian Federation. Unfortunately, for a variety of reasons and, despite the existence of federal and regional legislation, today Russia does not pay due attention to this issue, which leads to an unreasonable increase in electricity consumption both during the creation of residential real estate objects and during their operation. 96 Экономические системы. 2020. № 2 Economic Systems. 2020. No. 2 The relevance of the topic is enhanced by significant energy consumption of residential buildings in use: more than 50% of electrical energy consumption falls on these real estate objects. Therefore, it is no coincidence, but a completely logical trend of the 21st century, that the governments of most countries popularized the idea of designing and building energy-efficient residential buildings. It was established that the improvement of domestic legislation in terms of energy efficiency has greatly improved the regulatory framework for the design and construction of energy-efficient residential real estate.


2019 ◽  
Vol 111 ◽  
pp. 03028
Author(s):  
Nazanin Moazzen ◽  
Mustafa Erkan Karagüler ◽  
Touraj Ashrafian

Energy efficiency of existing buildings is a concept to manage and restrain the growth in energy consumption and one of the crucial issues due to the magnitude of the sector. Educational buildings are in charge of about 15% of the total energy consumption of the non-residential building sector. However, not only operational but also embodied energy of a building should be reduced to get the overall benefits of energy efficiency, where, using energy efficient architectural measures and low emitting materials during every retrofit action can be a logical step. The majority of buildings in Turkey and EU was built earlier than the development of the energy efficiency in the construction sector, hence, without energy retrofit, consume an enormous amount of energy that can be averted significantly by the implementation of some even not advanced retrofit measures. Furthermore, demolishing of a building to construct a new one is not a rational approach concerning cost, time and environmental pollution. The study has been focused on the impact assessment of the various architectural scenarios of energy efficiency upgrading on the Life Cycle Energy Consumption (LCEC) and Life Cycle CO2 (LCCO2) emission. Within the scope of the study, a primary school building is selected to be analysed. Through analysis, the total embodied and operational energy use and CO2 emission regarding the life cycle phase of the building is quantitatively defined and investigated in the framework of life cycle inventory. The paper concentrates on the operation and embodied energy consumption arising from the application of a variety of measures on the building envelope. An educational building with low LCCO2 emissions and LCEC in Turkey is proposed. To exemplify the approach, contributions are applied to a case study in Istanbul as a representative school building. The primary energy consumption of the case study building is calculated with a dynamic simulation tool, EnergyPlus. Afterwards, a sort of architectural energy efficient measures is implemented in the envelope while the lighting and mechanical systems remain constant. The energy used in the production and transportation of materials, which are the significant parts of the embodied energy, are taken into account as well.


2021 ◽  
Vol 13 (9) ◽  
pp. 5266
Author(s):  
Ahmed Abdelrady ◽  
Mohamed Hssan Hassan Abdelhafez ◽  
Ayman Ragab

Building insulation based on nanomaterials is considered one of the most effective means of reducing energy consumption in the hot desert climate. The application of an energy-efficient insulation system can significantly decrease the energy consumed via a building’s air-conditioning system during the summer. Hence, building insulation has become an interesting research topic, especially with regards to the use of insulation based on nanomaterials due to their low U-values. In the present study, the use of nano vacuum insulation panels (VIPs) or polystyrene foam in the walls enabled a significant reduction in the annual energy consumption, a savings of 23% compared to the uninsulated wall in a study in New Aswan City. The application of nanogel glazing to the windows (two layers of clear glass filled with the nanogel) achieved approximately 11% savings in annual energy. This savings, twice that obtained by using double-glazed windows, could be due to the low U-value of nanogel compared to the U-values of argon or air. The embedded nanogel layer between two layers of argon and two layers of single clear glass showed a significant reduction in annual energy consumption, saving 26% compared to the use of a single layer of glass. Moreover, the integration between this window and embedded walls with 50 mm of polystyrene foam exhibited a significant improvement of energy efficiency by 47.6% while presenting the lowest value of simple payback period (SPP). This research provides a way for buildings to be insulated to make them more energy efficient as well as attractive from the economic standpoint.


2013 ◽  
Vol 773 ◽  
pp. 221-226
Author(s):  
Xian Feng Chen ◽  
Wei Min Zhang

This paper focus on energy consumption and safety function of servo drive, and analysis of the safety integrated functions of the servo drive and its energy consumption features. Servo drive with "safety energy efficiency" concept was proposed based on motion control level. This paper has analyzed the energy consumption distribution characteristics formula of the servo drive architecture, and then, explain the characteristics of safety integrated function from the control path of servo drive. With analyzing the distribution of energy consumption and its safety integrated function, the safety energy efficiency model" is established, which reveals the relationship between servo drive's safety features and energy efficiency. Finally, the application prospects safety energy efficiency model was shown from the view of practical point.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Samuel Ekung ◽  
Isaac Abiodun Odesola ◽  
Timothy Adewuyi

PurposeThe dearth of green standards (GS) in sub-Saharan Africa is alarming and the green cost premiums (GCP) in seeking certification in emerging markets are scanty. This paper studied the Building Energy-Efficiency Code of Nigeria (BEEC) and estimated the potential GCPs associated with the various energy-efficiency ratings.Design/methodology/approachThe study retrofitted 150 conventional residential bungalow and maisonette buildings using BEEC's energy-efficiency interventions and performed analytical estimating of the retrofitted designs. The mean cost premium associated with each energy-efficiency intervention is presented as well as their financial benefits and payback periods. The benefits are achievable financial-savings due to a reduction in energy consumption and savings in electricity payment estimated from the average energy demands of each building. An independent t-test was further conducted to determine the cost differential between energy-efficient design (ED) and conventional design over a five-year period.FindingsThe potential GCPs and their payback periods are actually less than feared. The study showed that less than 5% and 21% extra funding would be required to achieve 1 to 4-Star and 5-Star energy-efficiency ratings involving passive design interventions and photovoltaic systems. Passive and active design interventions produced a financial savings of $8.08/m2 in electricity payment and $2.84/m2 per annum in energy consumption reduction. The financial-savings ($10.92/m2) was objective to pay-off the GCPs in less than four years. The independent t-test analysis showed the cost of ED is more economical after four years into the project lifecycle.Originality/valueThe research provides cost benchmarks for navigating cost planning and budgetary decisions during ED implementation and births a departure point for advancing energy-efficient construction in developing markets from the rational economic decision perspective.


Author(s):  
O. A. Omitaomu ◽  
B. L. Bhaduri ◽  
C. S. Maness ◽  
J. B. Kodysh ◽  
A. M. Noranzyk

Energy efficiency is the lowest cost option being promoted for achieving a sustainable energy policy. Thus, there have been some innovations to reduce residential and commercial energy usage. There have also been calls to the utility companies to give customers access to timely, useful, and actionable information about their energy use, in order to unleash additional innovations in homes and businesses. Hence, some web-based tools have been developed for the public to access and compare energy usage data. In order to advance on these efforts, we propose a data analytics framework called Citizen Engagement for Energy Efficient Communities (CoNNECT). On the one hand, CoNNECT will help households to understand (i) the patterns in their energy consumption over time and how those patterns correlate with weather data, (ii) how their monthly consumption compares to other households living in houses of similar size and age within the same geographic areas, and (iii) what other customers are doing to reduce their energy consumption. We hope that the availability of such data and analysis to the public will facilitate energy efficiency efforts in residential buildings. These capabilities formed the public portal of the CoNNECT framework. On the other hand, CoNNECT will help the utility companies to better understand their customers by making available to the utilities additional datasets that they naturally do not have access to, which could help them develop focused services for their customers. These additional capabilities are parts of the utility portal of the CoNNECT framework. In this paper, we describe the CoNNECT framework, the sources of the data used in its development, the functionalities of both the public and utility portals, and the application of empirical mode decomposition for decomposing usage signals into mode functions with the hope that such mode functions could help in clustering customers into unique groups and in developing guidelines for energy conservation.


2013 ◽  
Vol 826 ◽  
pp. 148-151
Author(s):  
Zan Yan ◽  
Zhi Tao Yuan ◽  
Meng Su Peng ◽  
Jun Tao Chen

High Pressure Grinding Roll (HPGR) is a modern and energy-efficient surface area and pore volume of HPGR and jaw crusher comminuted products. The results indicate that HPGR products have lower work index, higher specific surface area and pore volume than its counterpart. Therefore HPGR is capable of lowering the energy consumption on plants, as well as improving the utilization of bauxite. In total, the HPGR is a better crushing solution than jaw crusher, at least in the perspective of energy efficiency.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1068 ◽  
Author(s):  
Juliana May Sangoi ◽  
Enedir Ghisi

The objective of this paper was to compare primary energy consumption and energy efficiency during the operation phase of different types and combinations of water heating systems in single-family dwellings. Systems with an electric shower, liquefied petroleum gas heater, and solar heater with electric backup were analysed. The analysis was performed by means of computer simulation using EnergyPlus. Three Brazilian cities with different climates were assessed, i.e., Curitiba, Brasília and Belém. The systems were compared in terms of final energy and primary energy consumption. Results showed that systems with an electric shower, which have a lower water flow rate, led to lower primary energy consumption. The solar heating system combined with an electric shower was the option with the lowest energy consumption, and the solar heating system with a heating element in the storage tank was the option that consumed more energy. The systems were sized according to the requirements of the Brazilian energy efficiency labelling for residential buildings, and the efficiency level was compared to the results of primary energy consumption. The electric shower was found to be the third lowest energy consumer, but it was ranked the least energy efficient by Brazilian labelling, while systems with high energy consumption, such as gas heaters and solar heaters with a heating element in the storage tank, were ranked the most energy efficient. Therefore, a review of the requirements and methodology of the Brazilian energy efficiency labelling for residential buildings is recommended in order to encourage the use of truly efficient systems. Public policies that encourage solar heating systems should establish requirements regarding the configuration and sizing both the solar heating system and the backup system.


Sign in / Sign up

Export Citation Format

Share Document