scholarly journals Finite element analysis of knee articular cartilage

2021 ◽  
Author(s):  
Randall Heydon

The knee joint is often subjected to high loads, which can lead to injury and osteoarthritis. To better understand its behaviour, a finite element model of the joint was created. A hyperelastic material model was created to represent articular cartilage. A six parameter Ogden curve was fiitted against experimental stress-stretch data of cartilage. This material was applied to two different finite element models of the knee created from anatomical slice images. The complete models were validated against data from experiments performed on whole knees. Under compressive loading, the deflection of the model joints were found to be within one-half of a standard deviation of the experimental data. One model was tested in alternate configurations; its response was found to be strongly related to cartilage thickness and knee flexion. Therefore, it is concluded that this cartilage material model can be used to accurately predict the load response of knees.

2021 ◽  
Author(s):  
Randall Heydon

The knee joint is often subjected to high loads, which can lead to injury and osteoarthritis. To better understand its behaviour, a finite element model of the joint was created. A hyperelastic material model was created to represent articular cartilage. A six parameter Ogden curve was fiitted against experimental stress-stretch data of cartilage. This material was applied to two different finite element models of the knee created from anatomical slice images. The complete models were validated against data from experiments performed on whole knees. Under compressive loading, the deflection of the model joints were found to be within one-half of a standard deviation of the experimental data. One model was tested in alternate configurations; its response was found to be strongly related to cartilage thickness and knee flexion. Therefore, it is concluded that this cartilage material model can be used to accurately predict the load response of knees.


Author(s):  
B. Scott Kessler ◽  
A. Sherif El-Gizawy

The accuracy of a finite element model for design and analysis of a metal forging operation is limited by the incorporated material model’s ability to predict deformation behavior over a wide range of operating conditions. Current rheological models prove deficient in several respects due to the difficulty in establishing complicated relations between many parameters. More recently, artificial neural networks (ANN) have been suggested as an effective means to overcome these difficulties. In the present work, a previously developed ANN with the ability to determine flow stresses based on strain, strain rate, and temperature is incorporated with finite element code. Utilizing this linked approach, a preliminary model for forging an aluminum wheel is developed. This novel method, along with a conventional approach, is then measured against the forging process as it is currently performed in actual production.


2011 ◽  
Vol 243-249 ◽  
pp. 527-530 ◽  
Author(s):  
Wen Da Wang ◽  
Zhi Feng Guo ◽  
Yan Li Shi

The steel tube confined concrete (STCC) column exhibits excellent mechanical performance. A 3-D finite element model (FEM) using ABAQUS was established to simulate the performance of the composite joints with STCC column and RC beam. Accurate material model, rational element type, and solution method were discussed. Some STCC columns and composite joints with concrete-filled steel tubular (CFST) column and STCC column were modeled based on the model, respectively. The results from FEM are good agreement with the test results. The mechanism of the composite joint was investigated based on the FEM.


2017 ◽  
Vol XXII (130) ◽  
pp. 44-59
Author(s):  
Marília de Albuquerque Bonelli ◽  
Ronaldo Casimiro da Costa ◽  
Fabiano Séllos Costa

Cervical spondylomyelopathy (CSM), or wobbler syndrome, affects mainly the cervical region of the vertebral column of large- and giant-breed dogs, causing compression of the spinal cord and/or nerve roots. Dynamic components are considered to play a role in the condition, but its pathophysiology has not been fully explained. Finite element analysis consists in creating a computer model capable of simulating the biomechanics of the structures of interest. The present work aims to clarify aspects related with construction of finite element models and CSM through a review of literature on both topics, stressing the benefits of using finite element models to study the pathophysiology and treatment of CSM. Despite existing difficulties in generating a finite element model that represents the cervical spine of the dog, development of such a model and further biomechanical studies should contribute for a greater understanding of CSM.


Author(s):  
Prabin Pathak ◽  
Y. X. Zhang

A simple, accurate and efficient finite element model is developed in ANSYS for numerical modelling of the nonlinear structural behavior of FRP strengthened RC beams under static loading in this paper. Geometric nonlinearity and material non-linear properties of concrete and steel rebar are accounted for this model. Concrete and steel reinforcement are modelled using Solid 65 element and Link 180 element, and FRP and adhesive are modelled using Shell 181element and Solid 45 element. Concrete is modelled using Nitereka and Neal’s model for compression, and isotropic and linear elastic model before cracking with strength gradually reducing to zero after cracking for tension. For steel reinforcement, the elastic perfectly plastic material model is used. FRPs are assumed to be linearly elastic until rupture and epoxy is assumed to be linearly elastic. The new FE model is validated by comparing the computed results with those obtained from experimental studies.


Author(s):  
K W Dalgarno ◽  
A J Day ◽  
T H C Childs

This paper describes a finite element analysis of a synchronous belt tooth under operational loads and conditions with the objective of obtaining a greater understanding of belt failure by tooth root cracking through an examination of the strains within the facing fabric in the belt. The analysis used the ABAQUS finite element program, and was based on a two-dimensional finite element model incorporating a hyperelastic material model for the elastomer compound. Contact between the belt tooth face and the pulley groove was modelled using surface interface elements which allowed only compression and shear forces at the contact surfaces. It is concluded that the critical strains in the facing fabric of the belt, and therefore the belt life, are largely determined by the tangential loading condition on the belt teeth.


2014 ◽  
Vol 665 ◽  
pp. 196-202
Author(s):  
Yi Qing Guo ◽  
Ping Zhou Cao

In order to study the performance of lightweight energy-saving composite floor, the finite element models of composite floor were established, which was based on the composite floor specimens test research. The finite element models were verified rationally and correctly in the paper, through compared with the composite floor test results. The finite element model can be used to analyze the load-bearing capacity of composite floor. Various influencing factors of composite floor with simply supported end were analyzed, such as the span of self-tapping screw, the diameter of self-tapping screw, the strength of thin panel and the elastic modulus of thin panel, etc. The results show that the load-bearing capacity of composite floor increases with the increase of the number of self-tapping screw, the diameter of self-tapping screw, the strength of thin panel and the elastic modulus of thin panel, etc. The load-bearing capacity calculate formula of composite floor was proposed.


2019 ◽  
Vol 9 (6) ◽  
pp. 1093 ◽  
Author(s):  
Namjung Kim ◽  
Chen Yang ◽  
Howon Lee ◽  
Narayana Aluru

Despite recent advances in additive manufacturing (AM) that shifts the paradigm of modern manufacturing by its fast, flexible, and affordable manufacturing method, the achievement of high-dimensional accuracy in AM to ensure product consistency and reliability is still an unmet challenge. This study suggests a general method to establish a mathematical spatial uncertainty model based on the measured geometry of AM microstructures. Spatial uncertainty is specified as the deviation between the planned and the actual AM geometries of a model structure, high-aspect-ratio struts. The detailed steps of quantifying spatial uncertainties in the AM geometry are as follows: (1) image segmentation to extract the sidewall profiles of AM geometry; (2) variability-based sampling; (3) Gaussian process modeling for spatial uncertainty. The modeled spatial uncertainty is superimposed in the CAD geometry and finite element analysis is performed to quantify its effect on the mechanical behavior of AM struts with different printing angles under compressive loading conditions. The results indicate that the stiffness of AM struts with spatial uncertainty is reduced to 70% of the stiffness of CAD geometry and the maximum von Mises stress under compressive loading is significantly increased by the spatial uncertainties. The proposed modeling framework enables the high fidelity of computer-based predictive tools by seamlessly incorporating spatial uncertainties from digital images of AM parts into a traditional finite element model. It can also be applied to parts produced by other manufacturing processes as well as other AM techniques.


Author(s):  
Vidyashankar Venkatesan ◽  
Nilay Mukherjee

Compressive loading is intrinsic to certain tissues in our body like articular cartilage and bone (1). In situ experiments in cartilage suggest that chondrocytes can undergo significant deformation due to compressive loading on the tissue (2). In situ and isolated cell experiments have concluded that cells are quite resilient to compressive loading, aspiration etc. and exhibit a moduli in the range of 0.6 to 2 kPa (3). However, few studies have attempted to understand the compressive behavior of cells in terms of its structural components. The structural components of a cell consist of a membrane and a dense network of at least three elements (actin, microtubules and intermediate filaments). Using finite element analysis techniques we wanted to explore the role of these structural components in determining the ability of the cell to withstand compression.


Author(s):  
Hao Gong ◽  
Jianhua Liu

Finite element analysis has been regarded as an effective research method for analyzing the loosening failure of bolted joints under vibration. However, there exist some factors, which influence the accuracy and reliability of loosening results, thus determining the explanations of the loosening mechanism. In this study, a 3D finite element model of a typical bolted joint was built to investigate the effects of several different factors on the loosening under transverse vibration loading. These influencing factors include preload generation, vibration parameter, and material model. Based on the simulation results, it was found that applying the method of pretension element to generate preload instead of the actual method of torque was reliable and efficient. For the vibration parameter, it showed that the decrease rate in preload was higher for a larger vibration amplitude. But once the bearing surface reached complete slip, the loosening rate would keep constant. This was because the thread surface at that time reached a sticking state. Vibration frequency was proved to have no effect on the loosening behavior. This result demonstrated that the quasi-static assumption for vibration frequency was reasonable. Additionally, it also indicated that plastic material models only affected the preload loss in the initial several vibration cycles and had no influence on the loosening rate of preload after several vibration cycles. Finally, experiments were conducted to confirm qualitatively the results obtained based on finite element analysis.


Sign in / Sign up

Export Citation Format

Share Document