scholarly journals An Assessment Of Microalgal Biodiesel With Acetone, Butanol and Ethanol Using LIfe Cycle Assessment (LCA) Methodology

2021 ◽  
Author(s):  
Cherilyn Dignan

Canada, as one of the largest producers and consumers of fossil fuels per capita on the planet, is attempting to reduce greenhouse gas (GHG) emissions. In order to accomplish this, fuel alternatives, such as biofuel, are required. Accordingly, this study uses LCA methodology to quantify the GHG impact of a unique biofuel production model. This unique model produces biodiesel (BD), acetone, butanol and ethanol (ABE) from microalgae and assesses the process GHG impact against other microalgal BD production processes. This study’s microalgal BD and ABE production process produces 76 kgCO2e per functional unit, whereas other comparable microalgal BD production processes produce between 3.7 and 85 kgCO2e. Overall, this study clarifies that without the development of versatile infrastructure to accommodate biofuel production, LCA studies will continue to find renewable fuel production processes net GHG positive for the simple reason that fossil resources are still the primary energy source.

2021 ◽  
Author(s):  
Cherilyn Dignan

Canada, as one of the largest producers and consumers of fossil fuels per capita on the planet, is attempting to reduce greenhouse gas (GHG) emissions. In order to accomplish this, fuel alternatives, such as biofuel, are required. Accordingly, this study uses LCA methodology to quantify the GHG impact of a unique biofuel production model. This unique model produces biodiesel (BD), acetone, butanol and ethanol (ABE) from microalgae and assesses the process GHG impact against other microalgal BD production processes. This study’s microalgal BD and ABE production process produces 76 kgCO2e per functional unit, whereas other comparable microalgal BD production processes produce between 3.7 and 85 kgCO2e. Overall, this study clarifies that without the development of versatile infrastructure to accommodate biofuel production, LCA studies will continue to find renewable fuel production processes net GHG positive for the simple reason that fossil resources are still the primary energy source.


2021 ◽  
Author(s):  
Ploy Achakulwisut ◽  
Peter Erickson

At present, most global GHG emissions – over 75% – are from fossil fuels. By necessity, reaching net zero emissions therefore requires dramatic reductions in fossil fuel demand and supply. Though fossil fuels have not been explicitly addressed by the UN Framework on Climate Change, a conversation has emerged about possible “supply-side” agreements on fossil fuels and climate change. For example, a number of countries, including Denmark, France, and New Zealand, have started taking measures to phase out their oil and gas production. In the United States, President Joe Biden has put a pause on new oil and gas leasing on federal lands and waters, while Vice President Kamala Harris has previously proposed a “first-ever global negotiation of the cooperative managed decline of fossil fuel production”. This paper aims to contribute to this emerging discussion. The authors present a simple analysis on where fossil fuel extraction has happened historically, and where it will continue to occur and expand if current economic trends continue without new policy interventions. By employing some simple scenario analysis, the authors also demonstrate how the phase-out of fossil fuel production is likely to be inequitable among countries, if not actively and internationally managed.


2016 ◽  
Vol 36 (1) ◽  
pp. 267-275
Author(s):  
SL Ezeoha ◽  
CN Anyanwu ◽  
JN Nwakaire

The benefits and impacts of enhanced cellulosic ethanol (CE) production, the major features of existing production processes, and some current research challenges of major pretreatment processes are presented. The prospects of enhanced CE production, especially in developing economies like Nigeria are highlighted. We conclude that in order to reap the promising prospects and conquer the challenges and negative impacts of enhanced CE production, current researches for production of cellulosic ethanol must be focused on the development of processes that are capable of liberating and fermenting lignocellulose into bioethanol at faster rates, higher yields, and overall technical and economic efficiency. These researches should concentrate on the development of cheaper enzymes, genetically engineered microorganisms, and cost-effective thermochemical processes in order to accomplish the much-needed breakthrough in cellulosic biofuel production. Properly targeted innovative researches on cellulosic ethanol production processes are the sure route to effective reduction of global dependence on nonrenewable fossil fuels. The needed research breakthroughs will obviously be based on innovative integration of processes rather than on the improvement of the well-known individual processes of bioethanol production. http://dx.doi.org/10.4314/njt.v36i1.32


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 993 ◽  
Author(s):  
Shahabaldin Rezania ◽  
Bahareh Oryani ◽  
Jinwoo Cho ◽  
Farzaneh Sabbagh ◽  
Parveen Fatemeh Rupani ◽  
...  

Due to the depletion of fossil fuels, biofuel production from renewable sources has gained interest. Malaysia, as a tropical country with huge resources, has a high potential to produce different types of biofuels from renewable sources. In Malaysia, biofuels can be produced from various sources, such as lignocellulosic biomass, palm oil residues, and municipal wastes. Besides, biofuels are divided into two main categories, called liquid (bioethanol and biodiesel) and gaseous (biohydrogen and biogas). Malaysia agreed to reduce its greenhouse gas (GHG) emissions by 45% by 2030 as they signed the Paris agreement in 2016. Therefore, we reviewed the status and potential of Malaysia as one of the main biofuel producers in the world in recent years. The role of government and existing policies have been discussed to analyze the outlook of the biofuel industries in Malaysia.


Author(s):  
Rohan Sharma ◽  
Scott Shirley ◽  
Tahir Farrukh ◽  
Mohammadhassan Kavosi ◽  
Myeongsub Kim

Abstract Biofuel is one of the renewable energy resources alternatives to fossil fuels [1]. Among various sources for biofuels, microalgae provide at least three-orders-of-magnitude higher production rate of biodiesel at a given land area than conventional crop-based methods. However, microalgal biodiesel still suffers from significantly lower harvesting performance, making such a fuel less competitive. To increase the separation performance of microalgae from cultivation solution, we used a spiral microchannel that enables the isolation of biofuel-algae particles from water and contaminants contained in the culturing solution. Our preliminary data show that separation performance in the microfluidic centrifugal separator is as high as 88% within a quick separation time of 30 seconds. To optimize separation performance, multiple parameters of algae behaviors and separation techniques were studied and were manipulated to achieve better performance. We found that changing these factors altered the separation performance by increasing or decreasing flocculation, or “clumping” of the microalgae within the microchannels. The important characteristics of the separator geometry, fluid properties, and environmental conditions on algae separation was found and will be further studied in the forthcoming tests. This introductory study reveals that there is an opportunity to improve the currently low performance of algae separation in centrifugal systems using much smaller designs in size, ensuring a much more efficient algae harvesting.


2019 ◽  
Vol 2019 ◽  
pp. 1-23
Author(s):  
Sinval F. Sousa ◽  
Breno L. Souza ◽  
Cristiane L. Barros ◽  
Antonio Otavio T. Patrocinio

The large and continuous use of fossil fuels as a primary energy source has led to several environmental problems, such as the increase of the greenhouse effect. In order to minimize these problems, attention has been drawn to renewable energy production. Solar energy is an attractive candidate as renewable source due to its abundance and availability. For this, it is necessary to develop devices able to absorb sunlight and convert it into fuels or electricity in a economical, technical and sustainable way. The so-called artificial photosynthesis has called the attention of researchers due to the possibility of using solar photocatalysts in converting water and CO2 into fuels. This manuscript presents a review of the recent developments of hybrid systems based on molecular photocatalysts immobilized on semiconductor surfaces for solar fuel production through water oxidation and CO2 reduction and also discusses the current challenges for the potential application of these photocatalyst systems.


2022 ◽  
Author(s):  
Andrej Jentsch

Abstract This publication provides a basic guideline to the application of Resource Exergy Analysis (REA) with a focus on energy systems evaluation. REA is a proven application of exergy analysis to the field of technology comparison.REA aims to help decision makers to obtain an indicator in addition to GHG emissions, that is grounded in science, namely Resource Consumption.Even if an energy system uses GHG-free energy increased Resource Consumption likely increases the need for fossil fuels and thus GHG emissions of the global economy. Resource Consumption can replace the less comprehensive Primary Energy Consumption as an indictor and reduce the risk of suboptimal decisions.Evaluating energy systems using REA is key to ensure that climate targets are reached in time.


Author(s):  
Seyed Ehsan Hosseini

Renewable and sustainable energy has an evolving story as the ongoing trade war in the word is influencing crude oil prices. Moreover, the global warming is an inevitable consequence of the worldwide increasing rate of fossil fuel utilization which has persuaded the governments to invest on the clean and sustainable energy resources. In recent years, the cost of green energy has tumbled, making the price of renewables competitive to the fossil fuels. Although, the hydrogen fuel is still extremely expensive compared to the crude oil price, investigations about clean hydrogen fuel production and utilization has been developed significantly which demonstrate the importance of the hydrogen fuel in the future. This article aims to scrutinize the importance of green hydrogen fuel production from solar/wind energy.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 295
Author(s):  
Mei Yin Ong ◽  
Saifuddin Nomanbhay ◽  
Fitranto Kusumo ◽  
Raja Mohamad Hafriz Raja Shahruzzaman ◽  
Abd Halim Shamsuddin

In this study, coconut oils have been transesterified with ethanol using microwave technology. The product obtained (biodiesel and FAEE) was then fractional distillated under vacuum to collect bio-kerosene or bio-jet fuel, which is a renewable fuel to operate a gas turbine engine. This process was modeled using RSM and ANN for optimization purposes. The developed models were proved to be reliable and accurate through different statistical tests and the results showed that ANN modeling was better than RSM. Based on the study, the optimum bio-jet fuel production yield of 74.45 wt% could be achieved with an ethanol–oil molar ratio of 9.25:1 under microwave irradiation with a power of 163.69 W for 12.66 min. This predicted value was obtained from the ANN model that has been optimized with ACO. Besides that, the sensitivity analysis indicated that microwave power offers a dominant impact on the results, followed by the reaction time and lastly ethanol–oil molar ratio. The properties of the bio-jet fuel obtained in this work was also measured and compared with American Society for Testing and Materials (ASTM) D1655 standard.


Author(s):  
Ahmed I. Osman ◽  
Neha Mehta ◽  
Ahmed M. Elgarahy ◽  
Amer Al-Hinai ◽  
Ala’a H. Al-Muhtaseb ◽  
...  

AbstractThe global energy demand is projected to rise by almost 28% by 2040 compared to current levels. Biomass is a promising energy source for producing either solid or liquid fuels. Biofuels are alternatives to fossil fuels to reduce anthropogenic greenhouse gas emissions. Nonetheless, policy decisions for biofuels should be based on evidence that biofuels are produced in a sustainable manner. To this end, life cycle assessment (LCA) provides information on environmental impacts associated with biofuel production chains. Here, we review advances in biomass conversion to biofuels and their environmental impact by life cycle assessment. Processes are gasification, combustion, pyrolysis, enzymatic hydrolysis routes and fermentation. Thermochemical processes are classified into low temperature, below 300 °C, and high temperature, higher than 300 °C, i.e. gasification, combustion and pyrolysis. Pyrolysis is promising because it operates at a relatively lower temperature of up to 500 °C, compared to gasification, which operates at 800–1300 °C. We focus on 1) the drawbacks and advantages of the thermochemical and biochemical conversion routes of biomass into various fuels and the possibility of integrating these routes for better process efficiency; 2) methodological approaches and key findings from 40 LCA studies on biomass to biofuel conversion pathways published from 2019 to 2021; and 3) bibliometric trends and knowledge gaps in biomass conversion into biofuels using thermochemical and biochemical routes. The integration of hydrothermal and biochemical routes is promising for the circular economy.


Sign in / Sign up

Export Citation Format

Share Document