Metapopulation-level associations in mutualistic stream fishes

2021 ◽  
Author(s):  
Seoghyun Kim ◽  
Christine Dolph ◽  
Akira Terui

Positive biotic interactions are recognized as important factors determining species distributions. Although effects of positive interactions have often been observed at local scales, much less is known about consequences at larger spatial scales such as metapopulation dynamics. Here, we study nest associations of stream fishes - widespread reproductive mutualism between host (nest-builder) and beneficiary (nest associate) species in North America - as a model system to examine the role of positive interactions in determining the metapopulation-level association between host and beneficiary species. Using regional data of fish distribution in the Midwestern US, we found that watershed-level occupancy of host species (i.e., metapopulation occupancy) remarkably increased that of nest associates. Importantly, our results illustrated that the effects of positive biotic interactions at the metapopulation level were comparable or even stronger than environmental drivers, i.e., factors that have been studied most extensively in metapopulation studies. This study provides insightful evidence that positive biotic interactions have large-scale consequences for distributions of organisms than previously thought. Successful biodiversity conservation may need a broader framework that appreciates the role of positive biotic interactions at larger spatial scales.

2012 ◽  
Vol 12 (19) ◽  
pp. 9335-9353 ◽  
Author(s):  
H. G. Ouwersloot ◽  
J. Vilà-Guerau de Arellano ◽  
A. C. Nölscher ◽  
M. C. Krol ◽  
L. N. Ganzeveld ◽  
...  

Abstract. We studied the atmospheric boundary layer (ABL) dynamics and the impact on atmospheric chemistry during the HUMPPA-COPEC-2010 campaign. We used vertical profiles of potential temperature and specific moisture, obtained from 132 radio soundings, to determine the main boundary layer characteristics during the campaign. We propose a classification according to several main ABL prototypes. Further, we performed a case study of a single day, focusing on the convective boundary layer, to analyse the influence of the dynamics on the chemical evolution of the ABL. We used a mixed layer model, initialized and constrained by observations. In particular, we investigated the role of large scale atmospheric dynamics (subsidence and advection) on the ABL development and the evolution of chemical species concentrations. We find that, if the large scale forcings are taken into account, the ABL dynamics are represented satisfactorily. Subsequently, we studied the impact of mixing with a residual layer aloft during the morning transition on atmospheric chemistry. The time evolution of NOx and O3 concentrations, including morning peaks, can be explained and accurately simulated by incorporating the transition of the ABL dynamics from night to day. We demonstrate the importance of the ABL height evolution for the representation of atmospheric chemistry. Our findings underscore the need to couple the dynamics and chemistry at different spatial scales (from turbulence to mesoscale) in chemistry-transport models and in the interpretation of observational data.


2013 ◽  
Vol 280 (1773) ◽  
pp. 20132495 ◽  
Author(s):  
Michael J. L. Peers ◽  
Daniel H. Thornton ◽  
Dennis L. Murray

Determining the patterns, causes and consequences of character displacement is central to our understanding of competition in ecological communities. However, the majority of competition research has occurred over small spatial extents or focused on fine-scale differences in morphology or behaviour. The effects of competition on broad-scale distribution and niche characteristics of species remain poorly understood but critically important. Using range-wide species distribution models, we evaluated whether Canada lynx ( Lynx canadensis ) or bobcat ( Lynx rufus ) were displaced in regions of sympatry. Consistent with our prediction, we found that lynx niches were less similar to those of bobcat in areas of sympatry versus allopatry, with a stronger reliance on snow cover driving lynx niche divergence in the sympatric zone. By contrast, bobcat increased niche breadth in zones of sympatry, and bobcat niches were equally similar to those of lynx in zones of sympatry and allopatry. These findings suggest that competitively disadvantaged species avoid competition at large scales by restricting their niche to highly suitable conditions, while superior competitors expand the diversity of environments used. Our results indicate that competition can manifest within climatic niche space across species’ ranges, highlighting the importance of biotic interactions occurring at large spatial scales on niche dynamics.


2021 ◽  
Vol 9 ◽  
Author(s):  
Nicol Rueda-M ◽  
Fabian C. Salgado-Roa ◽  
Carlos H. Gantiva-Q ◽  
Carolina Pardo-Díaz ◽  
Camilo Salazar

Studying how the environment shapes current biodiversity patterns in species rich regions is a fundamental issue in biogeography, ecology, and conservation. However, in the Neotropics, the study of the forces driving species distribution and richness, is mostly based on vertebrates and plants. In this study, we used 54,392 georeferenced records for 46 species and 1,012 georeferenced records for 38 interspecific hybrids of the Neotropical Heliconius butterflies to investigate the role of the environment in shaping their distribution and richness, as well as their geographic patterns of phylogenetic diversity and phylogenetic endemism. We also evaluated whether niche similarity promotes hybridization in Heliconius. We found that these insects display five general distribution patterns mostly explained by precipitation and isothermality, and to a lesser extent, by altitude. Interestingly, altitude plays a major role as a predictor of species richness and phylogenetic diversity, while precipitation explains patterns of phylogenetic endemism. We did not find evidence supporting the role of the environment in facilitating hybridization because hybridizing species do not necessarily share the same climatic niche despite some of them having largely overlapping geographic distributions. Overall, we confirmed that, as in other organisms, high annual temperature, a constant supply of water, and spatio-topographic complexity are the main predictors of diversity in Heliconius. However, future studies at large scale need to investigate the effect of microclimate variables and ecological interactions.


Polar Biology ◽  
2020 ◽  
Vol 43 (11) ◽  
pp. 1693-1705
Author(s):  
Miriam L. S. Hansen ◽  
Dieter Piepenburg ◽  
Dmitrii Pantiukhin ◽  
Casper Kraan

Abstract In times of accelerating climate change, species are challenged to respond to rapidly shifting environmental settings. Yet, faunal distribution and composition are still scarcely known for remote and little explored seas, where observations are limited in number and mostly refer to local scales. Here, we present the first comprehensive study on Eurasian-Arctic macrobenthos that aims to unravel the relative influence of distinct spatial scales and environmental factors in determining their large-scale distribution and composition patterns. To consider the spatial structure of benthic distribution patterns in response to environmental forcing, we applied Moran’s eigenvector mapping (MEM) on a large dataset of 341 samples from the Barents, Kara and Laptev Seas taken between 1991 and 2014, with a total of 403 macrobenthic taxa (species or genera) that were present in ≥ 10 samples. MEM analysis revealed three spatial scales describing patterns within or beyond single seas (broad: ≥ 400 km, meso: 100–400 km, and small: ≤ 100 km). Each scale is associated with a characteristic benthic fauna and environmental drivers (broad: apparent oxygen utilization and phosphate, meso: distance-to-shoreline and temperature, small: organic carbon flux and distance-to-shoreline). Our results suggest that different environmental factors determine the variation of Eurasian-Arctic benthic community composition within the spatial scales considered and highlight the importance of considering the diverse spatial structure of species communities in marine ecosystems. This multiple-scale approach facilitates an enhanced understanding of the impact of climate-driven environmental changes that is necessary for developing appropriate management strategies for the conservation and sustainable utilization of Arctic marine systems.


Oecologia ◽  
2021 ◽  
Author(s):  
Juan Ernesto Guevara Andino ◽  
Nigel C. A. Pitman ◽  
Hans ter Steege ◽  
Manuel Peralvo ◽  
Carlos Cerón ◽  
...  

AbstractEnvironmental and dispersal filters are key determinants of species distributions of Amazonian tree communities. However, a comprehensive analysis of the role of environmental and dispersal filters is needed to understand the ecological and evolutionary processes that drive phylogenetic and taxonomic turnover of Amazonian tree communities. We compare measures of taxonomic and phylogenetic beta diversity in 41 one-hectare plots to test the relative importance of climate, soils, geology, geomorphology, pure spatial variables and the spatial variation of environmental drivers of phylogenetic and taxonomic turnover in Ecuadorian Amazon tree communities. We found low phylogenetic and high taxonomic turnover with respect to environmental and dispersal filters. In addition, our results suggest that climate is a significantly better predictor of phylogenetic turnover and taxonomic turnover than geomorphology and soils at all spatial scales. The influence of climate as a predictor of phylogenetic turnover was stronger at broader spatial scales (50 km2) whereas geomorphology and soils appear to be better predictors of taxonomic turnover at mid (5 km2) and fine spatial scales (0.5 km2) but a weak predictor of phylogenetic turnover at broad spatial scales. We also found that the combined effect of geomorphology and soils was significantly higher for taxonomic turnover at all spatial scales but not for phylogenetic turnover at large spatial scales. Geographic distances as proxy of dispersal limitation was a better predictor of phylogenetic turnover at distances of 50 < 500 km. Our findings suggest that climatic variation at regional scales can better predict phylogenetic and taxonomic turnover than geomorphology and soils.


2021 ◽  
Author(s):  
Yong Zheng ◽  
Liang Chen ◽  
Niu-Niu Ji ◽  
Yong-Long Wang ◽  
Cheng Gao ◽  
...  

Latitudinal gradients provide opportunities to better understand soil fungal community assembly and its relationship with vegetation, climate, soil and ecosystem function. We quantified the relative importance of stochastic and deterministic processes in structuring soil fungal communities using patterns of community dissimilarity observed within and between twelve natural forests. The results revealed that whole fungal communities and communities of arbuscular and ectomycorrhizal fungi consistently exhibited divergent patterns but with less divergence for ectomycorrhizal fungi at most sites. Within those forests, no clear relationships were observed between the degree of divergence within fungal and plant communities. When comparing communities at larger spatial scales, among the twelve forests, we observed distinct separation in all three fungal groups among tropical, subtropical and temperate biomes. Soil fungal β-diversity patterns between forests were greater when comparing forests exhibiting high habitat turnover, with these patterns being driven to a greater extent in each fungal group by temperature, soil pH, soil carbon and plant community composition than by geographic distance. Taken together, although large-scale community turnover could be attributed to specific environmental drivers, strong divergence during community assembly in forest soils at local scales limits the predictability of fungal community assembly outcomes.


2021 ◽  
Author(s):  
Werner Rammer ◽  
Rupert Seidl

&lt;p&gt;In times of rapid global change, the ability to faithfully predict the development of vegetation on larger scales is of key relevance to society. However, ecosystem models that incorporate enough process understanding for being applicable under future and non-analog conditions are often restricted to finer spatial scales due to data and computational constraints. Recent breakthroughs in machine learning, particularly in the field of deep learning, allow bridging this scale mismatch by providing new means for analyzing data, e.g., in remote sensing, but also new modelling approaches. We here present a novel approach for Scaling Vegetation Dynamics (SVD) which uses a deep neural network for predicting large-scale vegetation development. In a first step, the network learns its representation of vegetation dynamics as a function of current vegetation state and environmental drivers from process-based models and empirical data. The trained model is then used within of a dynamic simulation on large spatial scales. In this contribution we introduce the conceptual approach of SVD and show results for example applications in Europe and the US. More broadly we discuss aspects of applying deep learning in the context of ecological modeling.&lt;/p&gt;


2014 ◽  
Vol 71 (3) ◽  
pp. 972-984 ◽  
Author(s):  
Eric M. Leibensperger ◽  
R. Alan Plumb

Abstract Large-scale chaotic stirring stretches tracer contours into filaments containing fine spatial scales until small-scale diffusive processes dissipate tracer variance. Quantification of tracer transport in such circumstances is possible through the use of Nakamura’s “effective diffusivity” diagnostics, which make clear the controlling role of stirring, rather than small-scale dissipation, in large-scale transport. Existing theory of effective diffusivity is based on a layerwise approach, in which tracer variance is presumed to cascade via horizontal (or isentropic) stirring to small-scale horizontal (or isentropic) diffusion. In most geophysical flows of interest, however, baroclinic shear will tilt stirred filamentary structures into almost-horizontal sheets, in which case the thinnest dimension is vertical; accordingly, it will be vertical (or diabatic) diffusion that provides the ultimate dissipation of variance. Here new theoretical developments define effective diffusivity in such flows. In the frequently relevant case of isentropic stirring, it is shown that the theory is, in most respects, unchanged from the case of isentropic diffusion: effective isentropic diffusivity is controlled by the isentropic stirring and, it is argued, largely independent of the nature of the ultimate dissipation. Diabatic diffusion is not amplified by the stirring, although it can be modestly enhanced through eddy modulation of static stability. These characteristics are illustrated in numerical simulations of a stratospheric flow; in regions of strong stirring, the theoretical predictions are well supported, but agreement is less good where stirring is weaker.


2019 ◽  
Vol 146 ◽  
pp. 62-78 ◽  
Author(s):  
Sara Román ◽  
Lidia Lins ◽  
Jeroen Ingels ◽  
Chiara Romano ◽  
Daniel Martin ◽  
...  

Science ◽  
2020 ◽  
Vol 370 (6520) ◽  
pp. 1066-1071 ◽  
Author(s):  
Deborah Zani ◽  
Thomas W. Crowther ◽  
Lidong Mo ◽  
Susanne S. Renner ◽  
Constantin M. Zohner

Changes in the growing-season lengths of temperate trees greatly affect biotic interactions and global carbon balance. Yet future growing-season trajectories remain highly uncertain because the environmental drivers of autumn leaf senescence are poorly understood. Using experiments and long-term observations, we show that increases in spring and summer productivity due to elevated carbon dioxide, temperature, or light levels drive earlier senescence. Accounting for this effect improved the accuracy of senescence predictions by 27 to 42% and reversed future predictions from a previously expected 2- to 3-week delay over the rest of the century to an advance of 3 to 6 days. These findings demonstrate the critical role of sink limitation in governing the end of seasonal activity and reveal important constraints on future growing-season lengths and carbon uptake of trees.


Sign in / Sign up

Export Citation Format

Share Document