scholarly journals Climate change as a catalyst of social evolution

2020 ◽  
Author(s):  
Jeanette Moss ◽  
Geoffrey While

Anthropogenic climatic change will be a major factor shaping natural populations over the foreseeable future. The scope of this issue has spawned the integrative field of global change biology, which is chiefly concerned with identifying vulnerabilities of natural systems to climate change and integrating these into models of biodiversity loss. Meanwhile, there remains considerable latitude for investigating the multiple indirect and nuanced ways that broad-scale shifts in the abiotic environment will impact biological systems. One major unexplored category of effects is on social organisation. While climate has consistently been implicated as a major source of natural selection responsible for facilitating the evolution of complex animal societies, studies directed at testing these links on contemporary climatic time scales have thus far been limited to a select few higher-order, eusocial, taxa. Here, we present the case for how climate change, and specifically rising global temperatures, could catalyze social change at multiple stages of social evolution. We argue that these effects will manifest themselves through a range of subtle, climate-mediated pathways affecting the opportunities, nature, and context of interactions between individuals. We propose a broad conceptual framework for considering these pathways first at the individual level, and then discuss how feedbacks between bottom-up and top-down processes could mediate population-level shifts. We then implement this framework to explore the capacity for climate-mediated shifts in social evolution within three broad categories of social complexity: social group formation, social group maintenance, and social elaboration. For each category, we leverage social evolutionary theory and phylogenetic work spanning diverse systems to describe the pivotal traits that underpin transitions from each level of social complexity. In doing so, we aim to build a case for how short-term individual responses to climate could scale to impart constructive and/or destructive effects on the origins, maintenance, and diversification of animal societies.

2018 ◽  
Author(s):  
Jana Verdura ◽  
Alba Vergés ◽  
Jorge Santamaría ◽  
Sònia de Caralt ◽  
Enric Ballesteros ◽  
...  

Macroalgal forests have gone missing from most temperate rocky shores during the last decades, triggering an important biodiversity loss. Cystoseira species are some of the main marine habitat-forming species on shallow water Mediterranean rocky bottoms and follow the same tendency, mainly related to habitat destruction and pollution. However, here we suggest that anormal positive thermal events may contribute to this widespread Cystoseira decline. Monitoring thorough natural populations showed a drastic decline on a natural and relict C. crinita population in terms of density and structure coinciding with anormal high temperatures experienced during a summer period. Additionally, we experimentally test in the laboratory the cause-effect of those temperatures and UV radiation conditions experienced in the field on C. crinita populations. Although, C. crinita is able to resist high temperature picks, usually reached in Mediterranean summers, exceptional and maintained periods as those experienced during extreme events (28ºC) lead to the death of all individuals, compromising the viability and conservation of these forest-forming populations. We show how climate change may seriously compromise algal populations and synergically act with historical drivers of macroalgal decline (pollution, habitat destruction and herbivorism). Financial support from EU2020 (R+I) under grant agreement No 689518 (MERCES), MINECO (CGL2016-76341-R) and from University of Girona under congress assistance fellowship program for PhD and master students.


2021 ◽  
Author(s):  
Elodie Caudal ◽  
Anne Friedrich ◽  
Marion Garin ◽  
Jing Hou ◽  
Joseph Schacherer

AbstractIn natural populations, the same mutation can lead to different phenotypic outcomes due to the genetic variation that exists among individuals. Such genetic background effects are commonly observed, including in the context of many human diseases. However, systematic characterization of these effects at the species level is still lacking to date. Here, we sought to comprehensively survey background-dependent traits associated with gene loss-of-function (LoF) mutations in 39 natural isolates of Saccharomyces cerevisiae using a transposon saturation strategy. By analyzing the modeled fitness variability of a total of 4,469 genes, we found that 15% of them, when impacted by a LoF mutation, exhibited a significant gain- or loss-of-fitness phenotype in certain natural isolates compared to the reference strain S288C. Out of these 632 genetic background-dependent fitness genes identified, a total of 2/3 show a continuous variation across the population while 1/3 are specific to a single genetic background. Genes related to mitochondrial function are significantly overrepresented in the set of genes showing a continuous variation and display a potential functional rewiring with other genes involved in transcription and chromatin remodeling as well as in nuclear-cytoplasmic transport. Such rewiring effects are likely modulated by both the genetic background and the environment. While background-specific cases are rare and span diverse cellular processes, they can be functionally related at the individual level. All background-dependent fitness genes tend to have an intermediate connectivity in the global genetic interaction network and have shown relaxed selection pressure at the population level, highlighting their potential evolutionary characteristics.


2021 ◽  
Author(s):  
Minh-Hoang Nguyen

The Mindsponge culture can be defined as a set of thinking processes, beliefs, and behaviors that is result- or target-driven. It is an entrepreneurship culture that urges me to overcome hardship with a transparent mind about my target. Adopting this culture is a tough process, but its fruitful results are worth the cost. Especially in the next decades, humanities have to acquire two crucial targets for sustainable development: curbing climate change and reducing biodiversity loss. To accomplish these targets, shifting the eco-deficit mindset to the eco-surplus mindset at the individual level and building eco-surplus culture at the organization level (e.g., business sectors) are required. Obtaining the Mindsponge culture can help us progress and actualize these objectives through creative performance.


2014 ◽  
Vol 24 (3) ◽  
pp. 195-205 ◽  
Author(s):  
Anne Cochrane ◽  
Gemma L. Hoyle ◽  
Colin J. Yates ◽  
Jeff Wood ◽  
Adrienne B. Nicotra

AbstractTemperature is a significant factor influencing seed germination and for many species temperature-mediated germination cues are vital for plant persistence. Rising temperatures forecast as a result of anthropogenic climate change may have a substantial influence on the population and range dynamics of plant species. Here, we report on the thermal constraints on seed germination in natural populations of four congeneric Banksia species collected from a longitudinal climate gradient in Western Australia. We investigated whether germination niche: (1) varied between species; (2) varied among populations of each species; and (3) varied in a consistent manner reflecting the climatic gradients of seed origin. We hypothesized that species would differ and that populations from warmer sites would have a broader temperature window for germination than populations from cooler sites. Species differed in the breadth of their germination niche, but temperatures that stimulated the most rapid and complete germination were similar across all species. A sharp reduction in germination percentage occurred above the optimum temperature, which coincided with significant delays in germination relative to the optimum. The temperatures causing these declines varied among populations. Across the species, there was a significant correlation between optimum germination temperature and mean annual temperature at seed source; however, there was no relationship at the population level for individual species. These data provide insight into the vulnerability of Banksia species to climate change, with those populations that require lower temperatures for germination, or have narrower optimal ranges for germination, likely to be most vulnerable to a warming climate.


2016 ◽  
Vol 283 (1824) ◽  
pp. 20152113 ◽  
Author(s):  
Kent D. Dunlap ◽  
Alex Tran ◽  
Michael A. Ragazzi ◽  
Rüdiger Krahe ◽  
Vielka L. Salazar

Compared with laboratory environments, complex natural environments promote brain cell proliferation and neurogenesis. Predators are one important feature of many natural environments, but, in the laboratory, predatory stimuli tend to inhibit brain cell proliferation. Often, laboratory predatory stimuli also elevate plasma glucocorticoids, which can then reduce brain cell proliferation. However, it is unknown how natural predators affect cell proliferation or whether glucocorticoids mediate the neurogenic response to natural predators. We examined brain cell proliferation in six populations of the electric fish, Brachyhypopomus occidentalis , exposed to three forms of predator stimuli: (i) natural variation in the density of predatory catfish; (ii) tail injury, presumably from predation attempts; and (iii) the acute stress of capture. Populations with higher predation pressure had lower density of proliferating (PCNA+) cells, and fish with injured tails had lower proliferating cell density than those with intact tails. However, plasma cortisol did not vary at the population level according to predation pressure or at the individual level according to tail injury. Capture stress significantly increased cortisol, but only marginally decreased cell proliferation. Thus, it appears that the presence of natural predators inhibits brain cell proliferation, but not via mechanisms that depend on changes in basal cortisol levels. This study is the first demonstration of predator-induced alteration of brain cell proliferation in a free-living vertebrate.


2021 ◽  
Author(s):  
Minh-Hoang Nguyen

The Mindsponge culture can be defined as a set of thinking processes, beliefs, and behaviors that is result- or target-driven. It is an entrepreneurship culture that urges me to overcome hardship with a transparent mind about my target. Adopting this culture is a tough process, but its fruitful results are worth the cost. Especially in the next decades, humanities have to acquire two crucial targets for sustainable development: curbing climate change and reducing biodiversity loss. To accomplish these targets, shifting the eco-deficit mindset to the eco-surplus mindset at the individual level and building eco-surplus culture at the organization level (e.g., business sectors) are required. Obtaining the Mindsponge culture can help us progress and actualize these objectives through creative performance.


2019 ◽  
Author(s):  
Sam G. B. Roberts ◽  
Anna Roberts

Group size in primates is strongly correlated with brain size, but exactly what makes larger groups more ‘socially complex’ than smaller groups is still poorly understood. Chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) are among our closest living relatives and are excellent model species to investigate patterns of sociality and social complexity in primates, and to inform models of human social evolution. The aim of this paper is to propose new research frameworks, particularly the use of social network analysis, to examine how social structure differs in small, medium and large groups of chimpanzees and gorillas, to explore what makes larger groups more socially complex than smaller groups. Given a fission-fusion system is likely to have characterised hominins, a comparison of the social complexity involved in fission-fusion and more stable social systems is likely to provide important new insights into human social evolution


2021 ◽  
Vol 34 (3) ◽  
pp. 234-241
Author(s):  
Norrina B Allen ◽  
Sadiya S Khan

Abstract High blood pressure (BP) is a strong modifiable risk factor for cardiovascular disease (CVD). Longitudinal BP patterns themselves may reflect the burden of risk and vascular damage due to prolonged cumulative exposure to high BP levels. Current studies have begun to characterize BP patterns as a trajectory over an individual’s lifetime. These BP trajectories take into account the absolute BP levels as well as the slope of BP changes throughout the lifetime thus incorporating longitudinal BP patterns into a single metric. Methodologic issues that need to be considered when examining BP trajectories include individual-level vs. population-level group-based modeling, use of distinct but complementary BP metrics (systolic, diastolic, mean arterial, mid, and pulse pressure), and potential for measurement errors related to varied settings, devices, and number of readings utilized. There appear to be very specific developmental periods during which divergent BP trajectories may emerge, specifically adolescence, the pregnancy period, and older adulthood. Lifetime BP trajectories are impacted by both individual-level and community-level factors and have been associated with incident hypertension, multimorbidity (CVD, renal disease, cognitive impairment), and overall life expectancy. Key unanswered questions remain around the additive predictive value of BP trajectories, intergenerational contributions to BP patterns (in utero BP exposure), and potential genetic drivers of BP patterns. The next phase in understanding BP trajectories needs to focus on how best to incorporate this knowledge into clinical care to reduce the burden of hypertensive-related outcomes and improve health equity.


Sign in / Sign up

Export Citation Format

Share Document