scholarly journals USE PF URBAN SLUDGE COMPOST AS FERTILIZANT ON APPLE ORCHARDS

2021 ◽  
Vol 37 (37) ◽  
pp. 103-114
Author(s):  
Claudia Nicola ◽  
◽  
Mihaela Paraschiv ◽  

This study shows the influence of compost fertilization derived from sludge obtained from wastewater treatment on the nutrition of an eight-year-old apple orchard, ʹJonathanʹ cv. A field experiment was conducted to demonstrate the beneficial and negative aspects of (urban) sludge compost fertilization in apples and to assess the risk of soil contamination with heavy metals from municipal sewage sludge compost. The experimental factor was the compost with the following gradations: V1 = 0 t/ha, V2 = 20 t/ha, V3 = 40 t/ha, V4 = 60 t/ha, V5 = 80 t/ha. After two years (2019-2021) from soil fertilization with compost, the nitrogen content of the leaves increased in the treatment with the maximum fertilization dose (80 t/ha) by 30% compared to the unfertilized control, while the phosphorus content of leaves increased by 80% compared to non-fertilization control. The potassium content of the leaves increased by 36% in the 80 t/ha treatment compared to the unfertilized control, but still remained at a deficit level. The results showed that growth and yield were improved by using sewage sludge compost. However, sewage sludge compost applications have not significantly altered the heavy metal content of plant tissues. The concentration of heavy metals in the soil did not exceed the maximum permissible thresholds according to standards established in other EU countries, where compost from sewage sludge is considered product, not waste. However, the calculation of the Igeo index (geoaccumulation index of heavy metal in soil) showed certain levels of soil pollution already installed with Cd Zn, Pb in all variants fertilized with compost.

2020 ◽  
Vol 13 (1-2) ◽  
pp. 25-30 ◽  
Author(s):  
Zsuzsanna Ladányi ◽  
Katalin Csányi ◽  
Andrea Farsang ◽  
Katalin Perei ◽  
Attila Bodor ◽  
...  

AbstractAgriculture is one of the major fields, where sewage sludge can be used. Its high nutrient content can contribute to the improvement of important soil properties, such as nutrient content, water balance and soil structure. However, sewage sludge may contain hazardous components, such as pathogens and pollutants. Therefore, it is important to monitor the effects of its field application. In this paper, we assessed the impacts of two low-dose (2.5 m3/ha) municipal sewage sludge compost applications (in 2013 and in 2017) in a 5.6 ha arable land in southeast Hungary (near Újkígyós), located in the Hungarian Great Plain. The nutrient and the heavy metal contents in the upper soil layer (0-30 cm) of the studied Chernozem soils were compared between two sampling campaigns in 2013 (before the compost applications) and in 2018 (after the compost applications). Basic soil properties (pH, salinity, humus content, carbonate content, Arany yarn number) complemented with nutrient content (K2O, P2O5, NO2+ NO3) and heavy metal content (Cd, Co, Cr, Cu, Ni, Pb and Zn) analyses were performed. The results show that no significant change can be noticed in the baseline parameters over the 5-year period. The slight increase in the P2O5, NO2+ NO3 content is closely related to the beneficial effects of the sewage sludge deposition. The soil-bound heavy metal load did not increase significantly as a result of the compost treatments, only nickel showed a slight increase in the topsoil. In all cases the heavy metal concentrations did not reach the contamination thresholds set by Hungarian standards. The results provided positive evidences proving that low dose municipal sewage sludge compost disposal on agricultural land is safe, and can be considered as a sustainable soil amendment for agriculture in compliance with legal requirements.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nesrine H. Youssef ◽  
Asma A. Al-Huqail ◽  
Hayssam M. Ali ◽  
Nader R. Abdelsalam ◽  
Mayada A. Sabra

Abstract Accumulation of the Municipal Sewage Sludge (MSS) is considered as one of the most harmful renewable ecological and human health problems. MSS is a renewable resource that could be used as a soil organic amendment. This study aims to reduce the Heavy Metals (HMs) from the sludge content and sludge compost. Furthermore, this study is considered the first to assess the mycotoxins content in sludge and sludge compost via a new biological treatment using the fungus Serendipita indica or a mixture of lactic acid bacteria, thus providing safer nutrients for the soil amendment for a longer time and preserving human health. The HMs and mycotoxins were determined. The results exhibited that the biotic remediation of bio-solid waste and sewage sludge compost succeeded; a new bio-treated compost with a very low content of heavy metals and almost mycotoxins-free contents was availed. Also, the results indicated that the Lactobacilli mixture realized the best results in reducing heavy metals contents and mycotoxins. Afterward, S. indica. biotic remediation of bio-solid waste and sewage sludge compost minimized the health risk hazards affecting the human food chain, allowing for the different uses of sludge to be safer for the environment.


2013 ◽  
Vol 20 (2) ◽  
pp. 303-320
Author(s):  
Ewa Krzywy-Gawrońska

Abstract A single-factor field experiment was carried out at the Cultivar Evaluation Station in Szczecin-Dabie in 2008-2010. The soil on which this experiment was set up is formed from light loamy sand (lls). In respect of granulometric composition, it is classified to the category of light soils, of soil quality class IV b and good rye complex. In the experiment, compost produced with municipal sewage sludge by the GWDA method was used. This compost contained clearly more nitrogen and phosphorus in relation to potassium. The content of heavy metals (Cd, Cu, Mn, Ni, Pb and Zn) in composts did not exceed standards of the Regulation of the Minister of Agriculture and Rural Development (Official Journal of Laws No. 165, item 765 of 2008) referring to organic fertilisers. In the study design, the following fertilisation treatments were applied: I - carbonate lime (CaCO3) at a dose of 1.5 Mg CaO · ha-1, II - high-calcium brown coal ash at a dose of 1.5 Mg CaO · ha-1, III - municipal sewage sludge compost at a dose of 250 kg N·ha-1, IV - municipal sewage sludge compost at a dose of 250 kg N · ha-1 + high-calcium brown coal ash at a dose of 1.5 Mg CaO · ha-1 (1st year of study), V - high-calcium brown coal ash at a dose of 1.5 Mg CaO · ha-1 (1st year of study), and 0.75 Mg CaO · ha-1 in following study years each, VI - municipal sewage sludge compost at a dose of 250 kg N · ha-1 + high-calcium brown coal ash at a dose of 1.5 Mg CaO · ha-1 (1st year of study), and 0.75 Mg CaO · ha-1 in following study years each. In addition, mineral fertilisation was applied annually in the form of multi-component fertiliser Polifoska 20, complex fertiliser Polimag S and ammonium nitrate. A test plant was perennial grass - Amur silver grass (Miscanthus sachariflorus). The obtained results show that Amur silver grass biomass contained on average the most nitrogen, ie 6.87 g·kg-1 d.m., in 2008, while the most phosphorus (0.39 g P·kg-1 d.m.), potassium (7.82 g K·kg-1 d.m.), magnesium (0.98 g Mg·kg-1 d.m.) and sulphur (1.19 g S·kg-1 d.m.) in 2010, whereas the most calcium ie 4.13 g Ca kg-1 d.m., in 2009. Significantly more nitrogen, calcium and sulphur was contained by Amur silver grass biomass from the objects where municipal sewage sludge compost had been applied without and with addition of high-calcium brown coal ash when compared to calcium carbonate or high-calcium brown coal ash being applied at a dose of 1.5 Mg CaO · ha-1. Differences in average phosphorus, potassium and magnesium contents in test plant biomass from particular fertilisation objects were not significant. The biomass of Amur silver grass contained significantly more cadmium, nickel, lead and zinc as affected by organic fertilisation without and with addition of high-calcium brown coal ash when compared with the objects where solely calcium carbonate or high-calcium brown coal ash had been introduced into soil. Differences in the average content of cadmium, nickel and zinc in test plant biomass from the objects fertilised with municipal sewage sludge compost without and with addition of high-calcium brown coal ash were not significant. The uptake of heavy metals by Amur silver grass biomass, ie its mean value of three harvest during three years of its cultivation, can be arranged in the following descending order of values: Zn > Mn > Pb > Cu > Ni > Cd. The degree of cadmium, copper, manganese, nickel, lead and zinc bioaccumulation in test plant biomass differed, depending on the fertilisation applied. The average degree of cadmium, nickel, lead and zinc accumulation after three study years was intense for all fertilisation objects, whereas average for copper and manganese.


2013 ◽  
Vol 15 (3) ◽  
pp. 48-54
Author(s):  
Ewa Krzywy-Gawrońska

Abstract A field experiment was conducted univariate in 2008-2010 in the Variety Assessment Station in Szczecin - Dąbie. The soil on which the experience was based is made of light loamy sand (pgl). In terms of granulometric composition it includes it into the category of light soils, agricultural suitability complex IV b, good (5). The experiment included, inter alia, waste compost produced with municipal sewage sludge produced by *GWDA and ash from brown coal (waste grate). No normal ranges for heavy metals being specified in the ministerial regulations were used for environmental purposes, which are maximum 20, 500, 750, 300, 1000 and 16 mg per 1 kg dry matter for cadmium, chromium, lead, nickel, copper and mercury, respectively16 were exceeded in the sewage sludge being used to produce the compost. The field experiment design consisted of 6 fertilisation objects. A test plant was Virginia fanpetals (Sida hermaphodrita Rusby). The content of available phosphorus, potassium and magnesium in the soil, being fertilised with municipal SSC with and without an addition of high-calcium BCA, changed after three years. There was an increase in the content of available phosphorus, potassium and magnesium forms, on average by 8.5%, 16.0% and 9.0%, respectively. When analysing the chemical properties of soil before and after this study, it may be stated that respective systems of municipal sewage sludge compost and high-calcium brown coal ash application differently affected most soil richness indices. The best fertilisation effects were obtained in the system with municipal sewage sludge compost being applied at a dose corresponding to 250 kg N ∙ ha-1 as well as with high-calcium brown coal ash at a dose corresponding to 1.5 Mg CaO ∙ ha-1 being introduced into soil in the first year of study and at a dose corresponding to 0.75 Mg CaO ∙ ha-1 in successive years. Fertilisation with municipal sewage sludge compost without and with addition of high-calcium brown coal ash favourably affected the preservation of soil environment stability and improvement of soil chemical composition


2020 ◽  
Author(s):  
Andrea Prof. Dr. Farsang ◽  
Katalin Dr. Perei ◽  
Attila Bodor ◽  
Zsuzsanna Dr. Ladányi ◽  
Katalin Csányi ◽  
...  

<p>Land application of sewage sludge is an increasingly popular means of the reuse of sewage sludge as it allows for recycling of valuable components, such as organic matter, N, P and other nutrients. Indeed, sewage sludge amendment to the soil modifies the soil’s physico-chemical properties, such as plant-available macro/micro nutrient contents, organic matter content. Additionally, sewage sludge applications can significantly increase the amount of microbial biomass in the soil and can also increase the soil enzyme activities. The aim of the present study is to investigate the impact of low-dose municipal sewage sludge compost amendment on the nutrient status and the biological activity in Chernozem soils. </p><p>The study area, located near Újkígyós (SE Hungary), is a 5.6 ha arable land, where 2.5 m<sup>3</sup>/ha/year municipal sewage compost has been regularly disposed since 2013. The pH (in H<sub>2</sub>O) and humus content of soils were measured according to standard procedures. The macronutrients P<sub>2</sub>O<sub>5</sub> and K<sub>2</sub>O were extracted using ammonium-lactate, while the nitrogen forms (NO<sub>2</sub><sup>-</sup> + NO<sub>3</sub><sup>-</sup> -N) were extracted with KCl-solution. The nutrient content was then determined by a flow injection analysis photometer. In order to determine the bacterial composition and enzyme activity of the soil samples, the number of living cells (CFUs), the catalase enzyme activity (CAT) and the dehydrogenase activity (DHA) were determined. The CO<sub>2</sub> emission was measured by an EGM-5 Portable High Precision CO<sub>2</sub> Meter in the field.  </p><p>The sewage sludge compost applied to Chernozem soils improved soil properties by adding slowly decomposing organic matter, abundant in plant macronutrients (N, K, P). The anaerobic microorganisms and the DHA enzyme activity in the anaerobic soil layers did not increase in the compost-amended soils. The aerobic microorganisms (CFUs) and CAT activity tended to be higher in treated soils compared to the non-amended (control) site, however not significantly. These results suggest that the soil biological activity is only moderately affected by the low-dose municipal sewage sludge compost applications. According to our field CO<sub>2</sub> emission measurements, the yearly application of the sewage sludge compost in a low-dose seemingly did not affect the soil respiration rates, compared to a local control site.</p><p>The research was funded by the ‘Thematic Network for the Sustainable Use of Re-sources – RING2017’ project (program code: EFOP-3.6.2-16-201700010).</p>


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 907
Author(s):  
Dariusz Zielonka ◽  
Wiesław Szulc ◽  
Monika Skowrońska ◽  
Beata Rutkowska ◽  
Stefan Russel

The aim of this study was to evaluate the ability of three hemp cultivars to accumulate heavy metals under sewage sludge (SS) and phosphogypsum (PG) application. The field study was carried out from 2014 to 2016 on Luvisol (loamy sand) in Poland. The experiment scheme included five treatments—T0: the control without fertilization, T1: 170 kg N (nitrogen) ha−1 from sewage sludge, T2: 170 kg N ha−1 from sewage sludge and 100 kg ha−1 of phosphogypsum, T3: 170 kg N ha−1 from sewage sludge and 500 kg ha−1 of phosphogypsum, and T4: 170 kg N ha−1 from sewage sludge and 1000 kg ha−1 of phosphogypsum. It was found that the application of municipal sewage sludge enriched the soil with the bioavailable forms of heavy metals to the greatest extent and contributed to the highest increase in their contents in vegetative and generative organs of hemp plants. These parameters showed a phosphogypsum dose-dependent decline, which could hinder the phytoextraction process. The greatest extractions of heavy metal(loid)s (HMs) from the soil treated with SS and PG were achieved by the Tygra variety, which had the highest bioconcentration factor (BCF) and biomass yield.


2011 ◽  
Vol 347-353 ◽  
pp. 1022-1030 ◽  
Author(s):  
Mian Hao Hu ◽  
Ju Hong Yuan

The environmental impact of sewage sludges depends on the availability and phytotoxicity of their heavy metal. The influence of representative sludges (industrial sludge and municipal sludge) on the availability of heavy metals, and their effects on seed germination were compared. The total heavy metal concentrations were below the maximum permitted for land applied waste and the differences among them were small. The DTPA-extracted metal concentrations were significant different. The sum of all the fractions in the slugdes was close to the total metal content as determined by extraction with aqua regia. In addition, there were significant differences in the chemical forms of the heavy metals (Hg, Ni, As, Cd, Cu, Cr, Zn, Pb) by the sequential extraction system. The two different sludges also affected seed germination and root elongation in different ways. The most serious adverse effects were caused by the municipal sewage sludge extract.


1992 ◽  
Vol 38 (3) ◽  
pp. 181-187 ◽  
Author(s):  
J.-F. Blais ◽  
J. C. Auclair ◽  
R. D. Tyagi

A mixed culture of two fast-growing bacterial strains for heavy-metal solubilization of municipal sewage sludge has been developed. Strain VA-7 decreases the initial sludge pH (7–8.5) to a value between 4.0 and 4.5. Then, strain VA-4 begins growing and further reduces the pH to values below 2.0. The rapid decrease of sludge pH by a mixed culture through sulfur oxidation into sulfuric acid solubilizes the toxic metals (Cd 83–96%, Cr 16–54%, Cu 85–87%, Mn 91–94%, Ni 78–79%, Pb 28–46%, Zn 82–96%) to levels recommended for intensive use of residual sludge in agriculture. A study of the physiological and metabolic characteristics of these strains revealed that isolate VA-7 is a strain of Thiobacillus thioparus (ATCC 55127), while isolate VA-4 corresponds to a Thiobacillus thiooxidans (ATCC 55128). These bacterial strains possess distinctive physiological characteristics that allow them to easily grow and solubilize heavy metals in municipal sludge. Key words: heavy metals, sewage sludge, thiobacilli, bioleaching, elemental sulfur.


Sign in / Sign up

Export Citation Format

Share Document