scholarly journals Isolation and antimicrobial testing of Aeromonas spp., Citrobacter spp., Cronobacter spp., Enterobacter spp., Escherichia spp., Klebsiella spp., and Trabulsiella spp. from the gallbladder of pigs

2015 ◽  
Vol 64 (2) ◽  
pp. 185-188 ◽  
Author(s):  
GRAMMATO EVANGELOPOULOU ◽  
GEORGIOS FILIOUSSIS ◽  
SPYRIDON KRITAS ◽  
MARIA KANTERE ◽  
ANGELIKI R. BURRIEL

The presence of Gram-negative bacteria species, other than Salmonella spp., in the gallbladder of pigs was examined. Isolated Gram-negative bacteria were assigned to species using the Microgen™ GnA+B-ID Systems. Of the 64 isolated strains 43 were identified as Escherichia coli, seven as Enterobacter spp., three each as Klebsiella spp., Citrobacterfreundii, Aeromonas hydrophila and Cronobacter sakazakii and one each as Escherichiafergusonii and Trabulsiella guamensis. Their antibiograms showed very high resistance to ampicillin, amoxicillin, tetracycline, chloramphenicol and sulfamethoxazole/trimethoprim. It was concluded that the pigs' gallbladder is a reservoir of potentially pathogenic Gram-negative bacteria for pork consumers.

Children ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 436
Author(s):  
Giovanni Parente ◽  
Tommaso Gargano ◽  
Stefania Pavia ◽  
Chiara Cordola ◽  
Marzia Vastano ◽  
...  

Pyelonephritis (PN) represents an important cause of morbidity in the pediatric population, especially in uropathic patients. The aim of the study is to demonstrate differences between PNs of uropathic patients and PNs acquired in community in terms of uropathogens involved and antibiotic sensitivity; moreover, to identify a proper empiric therapeutic strategy. A retrospective study was conducted on antibiograms on urine cultures from PNs in vesicoureteral reflux (VUR) patients admitted to pediatric surgery department and from PNs in not VUR patients admitted to Pediatric Emergency Unit between 2010 and 2020. We recorded 58 PNs in 33 patients affected by VUR and 112 PNs in the not VUR group. The mean age of not VUR patients at the PN episode was 1.3 ± 2.6 years (range: 20 days of life–3 years), and almost all the urine cultures, 111 (99.1%), isolated Gram-negative bacteria and rarely, 1 (0.9%), Gram-positive bacteria. The Gram-negative uropathogens isolated were Escherichia coli (97%), Proteus mirabilis (2%), and Klebsiella spp. (1%). The only Gram-positive bacteria isolated was an Enterococcus faecalis. As regards the antibiograms, 96% of not VUR PNs responded to beta-lactams, 99% to aminoglycosides, and 80% to sulfonamides. For the VUR group, mean age was 3.0 years ± 3.0 years (range: 9 days of life–11 years) and mean number of episodes per patient was 2.0 ± 1.0 (range: 1–5); 83% of PNs were by Gram-negatives bacteria vs. 17% by Gram-positive: the most important Gram-negative bacteria were Pseudomonas aeruginosa (44%), Escherichia coli (27%), and Klebsiella spp. (12%), while Enterococcus spp. determined 90% of Gram-positive UTIs. Regimen ampicillin/ceftazidime (success rate: 72.0%) was compared to ampicillin/amikacin (success rate of 83.0%): no statistically significant difference was found (p = 0.09). The pathogens of PNs in uropathic patients are different from those of community-acquired PNs, and clinicians should be aware of their peculiar antibiotic susceptibility. An empiric therapy based on the association ampicillin + ceftazidime is therefore suggested.


1986 ◽  
Vol 32 (1) ◽  
pp. 66-69 ◽  
Author(s):  
Petri Viljanen ◽  
Helena Käyhty ◽  
Martti Vaara ◽  
Timo Vaara

Polymyxin B nonapeptide was able to sensitize Escherichia coli strains and strains of Salmonella typhimurium, Klebsiella spp., Enterobacter cloacae, Pseudomonas aeruginosa, and Haemophilus influenzae to the bactericidal action of fresh normal human serum. The degree of sensitization varied significantly within the strains. Strains of Proteus mirabilis, Neisseria gonorrhoeae, and N. meningitidis remained resistant.


1969 ◽  
Vol 111 (4) ◽  
pp. 461-472 ◽  
Author(s):  
G R Whistance ◽  
J. F. Dillon ◽  
D R Threlfall

1. Twenty-two aerobically grown Gram-negative bacteria were analysed for demethylmenaquinones, menaquinones, 2-polyprenylphenols, 6-methoxy-2-polyprenylphenols and ubiquinones. 2. All the eight enterobacteria and both the two facultative organisms (Aeromonas punctata and Aeromonas hydrophila) examined contain all the compounds listed above. The principal homologues are octaprenyl; in addition lower (down to tri- or tetra-prenyl for the 2-polyprenylphenols) and sometimes higher homologues are also present. 3. Strict aerobes are of two types, those that contain 2-polyprenylphenols, 6-methoxy-2-polyprenylphenols and ubiquinones, and those that contain ubiquinones only. The principal homologues are generally octa- or nona-prenyl, although one organism (Agrobacterium tumefaciens) has ubiquinone-10 as its principal homologue. As in the enterobacteria, lower homologues of these compounds are also present. 4. In Escherichia coli W, Pseudomonas ovalis Chester and Pseudomonas fluorescens, radioactivity from p-hydroxy[U−14C]benzoic acid is incorporated into 2-polyprenylphenols, 6-methoxy-2-polyprenylphenols, 6-methoxy-3-methyl-2-polyprenyl-1,4-benzoquinones, ubiquinones and a compound tentatively identified as 2-polyprenyl-1,4-benzoquinone. The fact that radioactivity is incorporated into the first three compounds suggests that in these organisms, and indeed in all those Gram-negative bacteria that contain 2-polyprenylphenols and 6-methoxy-2-polyprenylphenols, ubiquinones are formed by a biosynthetic sequence similar to that in Rhodospirillum rubrum. 5. The finding in ‘Vibrio O1’ (Moraxella sp.) and organism PC4 that 2-polyprenylphenols and 6-methoxy-2-polyprenylphenols are chemically and radiochemically undetectable leads to the conclusion that they are not intermediates in the biosynthesis of ubiquinone by these and by other Gram-negative bacteria that do not contain detectable amounts of 2-polyprenylphenols and 6-methoxy-2-polyprenylphenols. However, ‘Vibrio O1’ (organism PC4 was not examined) does contain 6-methoxy-3-methyl-2-polyprenyl-1,4-benzoquinone. 6. In Ps. ovalis Chester, radioactivity from l-[Me−14C]methionine is incorporated into the nuclear C-methyl and O-methyl groups of 6-methoxy-3-methyl-2-polyprenyl-1,4-benzoquinones and ubiquinone-9, and into the O-methyl group of 6-methoxy-2-polyprenylphenols.


Author(s):  
B. C. Anele ◽  
I. M. Ikeh ◽  
H. O. Stanley

The keypads of Automated Teller Machines (ATMs) are subjected to several microbial contaminations due to their large dermal contact by numerous users and different personal hygiene practice. The study investigated the bacterial diversity and level of contamination obtainable on the ATM keypads during transactions and antibiotics susceptibility pattern of the isolates. The population of culturable bacterial isolates was determined by plating. Isolates were characterized culturally, morphologically and biochemically. Antibiotic susceptibility pattern of the isolates was determined using the disc diffusion method. The total culturable heterotrophic bacterial counts ranssged from 5.23 to 9.25 log cfu/g. The bacterial identified and frequency of occurrence is Staphylococcus aureus (17.5%), Escherichia coli (22.5%), Bacillus spp (17.5%), Salmonella spp (10.0%), Pseudomonas aeruginosa (10.0%), Proteus spp (7.5%) and Klebsiella spp (15.0%) respectively. Staphylococcus aureus were more susceptible to Chloramphenicol (37mm) and were more resistant to Rifampicin (00mm) and Levofloxacin (00mm) respectively. The Gram negative isolates in the study were susceptible to ciprofloxacin and gentamycin and more resistant to ceporex, nalidixic acid, septrin and ampicillin respectively.  The highest gram negative isolates that showed more susceptible to all the used gram negative antibiotics were Escherichia coli and Salmonella spp while the lowest were Klebsiella spp and Proteus spp respectively. The study has revealed that bacterial contamination on ATM keypads is of health significance and could result to public health challenges if not properly managed. Therefore, adequate hand- washing hygienic practices and cleaning agents are advocated towards reducing the related ill- health among ATM users.


Author(s):  
Rubal C Das ◽  
Rajib Banik ◽  
Robiul Hasan Bhuiyan ◽  
Md Golam Kabir

Macrophomina phaseolina is one of the pathogenic organisms of gummosis disease of orange tree (Citrus reticulata). The pathogen was identified from the observation of their colony size, shape, colour, mycelium, conidiophore, conidia, hyaline, spore, and appressoria in the PDA culture. The crude chloroform extracts from the organism showed antibacterial activity against a number of Gram positive and Gram-negative bacteria. The crude chloroform extract also showed promising antifungal activity against three species of the genus Aspergillus. The minimum inhibitory concentration (MIC) of the crude chloroform extract from M. phaseolina against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Shigella sonnie were 128 ?gm, 256 ?gm, 128 ?gm and 64 ?gm/ml respectively. The LD50 (lethal dose) values of the cytotoxicity assay over brine shrimp of the crude chloroform extract from M. phaseolina was found to be 51.79 ?gm/ml. DOI: http://dx.doi.org/10.3329/cujbs.v5i1.13378 The Chittagong Univ. J. B. Sci.,Vol. 5(1 &2):125-133, 2010


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tessa B. Moyer ◽  
Ashleigh L. Purvis ◽  
Andrew J. Wommack ◽  
Leslie M. Hicks

Abstract Background Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against Gram-negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. Herein, a truncated synthetic analog containing the γ-core motif of Amaranthus tricolor DEF2 (Atr-DEF2) reveals Gram-negative antibacterial activity and its mechanism of action is probed via proteomics, outer membrane permeability studies, and iron reduction/chelation assays. Results Atr-DEF2(G39-C54) demonstrated activity against two Gram-negative human bacterial pathogens, Escherichia coli and Klebsiella pneumoniae. Quantitative proteomics revealed changes in the E. coli proteome in response to treatment of sub-lethal concentrations of the truncated defensin, including bacterial outer membrane (OM) and iron acquisition/processing related proteins. Modification of OM charge is a common response of Gram-negative bacteria to membrane lytic antimicrobial peptides (AMPs) to reduce electrostatic interactions, and this mechanism of action was confirmed for Atr-DEF2(G39-C54) via an N-phenylnaphthalen-1-amine uptake assay. Additionally, in vitro assays confirmed the capacity of Atr-DEF2(G39-C54) to reduce Fe3+ and chelate Fe2+ at cell culture relevant concentrations, thus limiting the availability of essential enzymatic cofactors. Conclusions This study highlights the utility of plant defensin γ-core motif synthetic analogs for characterization of novel defensin activity. Proteomic changes in E. coli after treatment with Atr-DEF2(G39-C54) supported the hypothesis that membrane lysis is an important component of γ-core motif mediated antibacterial activity but also emphasized that other properties, such as metal sequestration, may contribute to a multifaceted mechanism of action.


2021 ◽  
Vol 22 (10) ◽  
pp. 5328
Author(s):  
Miao Ma ◽  
Margaux Lustig ◽  
Michèle Salem ◽  
Dominique Mengin-Lecreulx ◽  
Gilles Phan ◽  
...  

One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.


2016 ◽  
Vol 60 (10) ◽  
pp. 5995-6002 ◽  
Author(s):  
Kristin R. Baker ◽  
Bimal Jana ◽  
Henrik Franzyk ◽  
Luca Guardabassi

ABSTRACTThe envelope of Gram-negative bacteria constitutes an impenetrable barrier to numerous classes of antimicrobials. This intrinsic resistance, coupled with acquired multidrug resistance, has drastically limited the treatment options against Gram-negative pathogens. The aim of the present study was to develop and validate an assay for identifying compounds that increase envelope permeability, thereby conferring antimicrobial susceptibility by weakening of the cell envelope barrier in Gram-negative bacteria. A high-throughput whole-cell screening platform was developed to measureEscherichia colienvelope permeability to a β-galactosidase chromogenic substrate. The signal produced by cytoplasmic β-galactosidase-dependent cleavage of the chromogenic substrate was used to determine the degree of envelope permeabilization. The assay was optimized by using known envelope-permeabilizing compounds andE. coligene deletion mutants with impaired envelope integrity. As a proof of concept, a compound library comprising 36 peptides and 45 peptidomimetics was screened, leading to identification of two peptides that substantially increased envelope permeability. Compound 79 reduced significantly (from 8- to 125-fold) the MICs of erythromycin, fusidic acid, novobiocin and rifampin and displayed synergy (fractional inhibitory concentration index, <0.2) with these antibiotics by checkerboard assays in two genetically distinctE. colistrains, including the high-risk multidrug-resistant, CTX-M-15-producing sequence type 131 clone. Notably, in the presence of 0.25 μM of this peptide, both strains were susceptible to rifampin according to the resistance breakpoints (R> 0.5 μg/ml) for Gram-positive bacterial pathogens. The high-throughput screening platform developed in this study can be applied to accelerate the discovery of antimicrobial helper drug candidates and targets that enhance the delivery of existing antibiotics by impairing envelope integrity in Gram-negative bacteria.


Sign in / Sign up

Export Citation Format

Share Document