scholarly journals Pengaruh Kekuatan Balok Induk Terhadap Dimensi Balok Anak Pada Beton Bertulang

2019 ◽  
Vol 8 (1) ◽  
pp. 1-7
Author(s):  
Tahan Tahan

Generally, concrete can be categorized into normal quality concrete and high-quality concrete, both are commonly used in construction. Normal quality concrete has approximately 20 MPa to 58 MPa quality, while the high-quality concrete has higher than 58 MPa. One of the applications of these concrete in structure is the dimension and joist position toward the beam�s strength in a story structure. To analyze the effect of joist toward beam, Finite Element Analysis (FEA)is applied with the following: Utilizing ANSYS with SOLID65, SOLID45, LINK8 with varying size of joist and beam such as type A beam by the size of 30/40 and joist by the size of 20/40, 25/40, 30/40, type B beam by the size of 30/50 and joist size of 25/50, 25/40, 25/35 and type C beam by the size of 40/60 and the joist size of 35/60, 35/50, 35/40. Steel material is used each has 400 MPa for the main reinforcement tension, 200 MPa for the stirrup reinforcement, normal quality concrete tension of 25 MPa, placement tension of 400 MPa, steel modulus elasticity of 200,000 MPa. Based on the FEA it is obtained that the comparison of joist influence toward the beam is centered from the comparison result of

Author(s):  
P. S. Holmes ◽  
J. R. Wright ◽  
J. E. Cooper

Abstract Dynamic tests were carried out on an aluminium plate with significant non-proportional damping applied via two oil filled dampers. Normal mode force appropriation (phase resonance) methods were used to measure the undamped normal modes of the plate and the results compared with corresponding complex modes obtained using a standard curve fitting (phase separation) approach. It is demonstrated that, as long as suitable excitation positions are chosen, high quality undamped normal modes can be identified while the curve fitted modes are highly complex. A Finite Element analysis of the plate was used to show how the results of normal mode force appropriation are directly comparable, particularly when damping is non-proportional.


Author(s):  
X. J. Xin ◽  
Z. J. Pei ◽  
Wenjie Liu

Silicon is the primary semiconductor material used to fabricate microchips. The quality of microchips depends directly on the quality of starting silicon wafers. A series of processes are required to manufacture high quality silicon wafers. Surface grinding is one of the processes used to flatten the wire-sawn wafers. A major issue in grinding of wire-sawn wafers is the reduction and elimination of wire-sawing induced waviness. Several approaches (namely, combination of grinding and lapping, reduced chuck vacuum, soft-pad, and wax mounting) have been proposed to address this issue. The results of finite element analysis modeling of these approaches have shown that soft-pad grinding is the most promising approach since it is very effective in reducing the waviness and very easy to be adopted to conventional grinding environment. This paper presents a study of finite element analysis on soft-pad grinding of wire-sawn silicon wafers, covering the mechanisms of waviness reduction and the effects of pad material properties.


2013 ◽  
Vol 372 ◽  
pp. 292-296 ◽  
Author(s):  
K. Annamalai ◽  
S. Sathyanarayanan ◽  
C.D. Naiju ◽  
Mohammed Shejeer

This study is focused on predicting the fatigue life expectancy of Girth gear-pinion assembly used in cement industries. Gear design and modeling was carried out using a CAD package and analysis was done using finite element analysis software, ANSYS. AISI 4135-low alloy steel material properties are considered and linear elastic finite element analysis and fatigue life analysis were carried out. The variable amplitude load is applied to simulate the real time loading of the gear-pinion assembly. Rainflow cycle counting algorithm and Minars linear damage rule is employed to predict the fatigue life. The critical stress and the corresponding deformation are discussed in the results. Finally the life expectancy of the girth gear and pinion assembly is estimated which would be useful for the periodical maintenance of the gear assembly.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Nicholas S Gukop ◽  
Peter M Kamtu ◽  
Bildad D Lengs ◽  
Alkali Babawuya ◽  
Adesanmi Adegoke

Investigation on the effect of mesh density on the analysis of simple support bracket was conducted using Finite element analysis simulation. Multiple analyses were carried out with mesh refinement from coarse mesh of 3.5 mm to a high-quality fine mesh with element size of 0.35 mm under 15 kN loading. Controlled mesh analysis was also conducted for the same loading. At the mesh size of 0.35 mm, it has a maximum stress value of 42.7 MPa. As the element size was reduced, it was observed that below 1.5 mm (higher mesh density) there was no significant increase in the peak stress value; the stress at this level increased by 0.028 % only. Further decreased of mesh size shows insignificant effect on the stresses and displacements for the high-quality fine mesh analysis. The application of High-quality mesh control analysis showed a significant reduction in the computation time by more than 90%. Regardless of the reduction in computation time, the controlled mesh analysis achieved more than 99% accuracy as compared to high-quality fine mesh analysis. Keywords— Computation time, Finite Element Analysis, Mesh density, Support Bracket.


2017 ◽  
Vol 24 (3) ◽  
pp. 615-621 ◽  
Author(s):  
Ioana T. Nistea ◽  
Simon G. Alcock ◽  
Paw Kristiansen ◽  
Adam Young

Actively bent X-ray mirrors are important components of many synchrotron and X-ray free-electron laser beamlines. A high-quality optical surface and good bending performance are essential to ensure that the X-ray beam is accurately focused. Two elliptically bent X-ray mirror systems from FMB Oxford were characterized in the optical metrology laboratory at Diamond Light Source. A comparison of Diamond-NOM slope profilometry and finite-element analysis is presented to investigate how the 900 mm-long mirrors sag under gravity, and how this deformation can be adequately compensated using a single, spring-loaded compensator. It is shown that two independent mechanical actuators can accurately bend the trapezoidal substrates to a range of elliptical profiles. State-of-the-art residual slope errors of <200 nrad r.m.s. are achieved over the entire elliptical bending range. High levels of bending repeatability (ΔR/R = 0.085% and 0.156% r.m.s. for the two bending directions) and stability over 24 h (ΔR/R = 0.07% r.m.s.) provide reliable beamline performance.


2010 ◽  
Vol 670 ◽  
pp. 318-324 ◽  
Author(s):  
Y. Motooka ◽  
So Noguchi ◽  
H. Igarashi

We have previously proposed an automatic hexahedral mesh generator. It is necessary to understand about the quality and characteristic of the generated mesh to perform hexahedral edge finite element analysis in electromagnetic. Therefore, we have compared high-quality meshes with poor-quality meshes, and investigated about the factors that affect the accuracy and the computation time. In addition, we investigated about the effect of the templates used in the proposed method. We will conclusively apply the result to improving the automatic hexahedral mesh generator.


2014 ◽  
Vol 1049-1050 ◽  
pp. 260-263
Author(s):  
Zheng Zhang ◽  
Xue Feng Cai ◽  
Yong Chao Ma ◽  
Meng Yi Lian ◽  
Ji Zhong Zhou

Mobile steel building is a prefabricated building built in a factory, with advantages on moving conveniently, simple structure and scalability. There are still not enough relevant standards and requirements to conduct the design and construction of this kind of buildings. In order to precede to theoretical study on integral structures of mobile steel buildings a method which used to set up finite element analysis model about this kind of structure was proposed. This method is based on finite element analysis software, ANSYS. Using this method a two-story structure model with one box unit in each story was analyzed. Lateral deformations under design load of the integral structure were solved out by these finite element models and were compared with the former experimental results, and the results were discussed.


2020 ◽  
pp. 112070002094918
Author(s):  
Sumon Nandi ◽  
Anoli Shah ◽  
Amin Joukar ◽  
Kevin Becker ◽  
Cody Crutchfield ◽  
...  

Background: The use of total hip arthroplasty (THA) femoral stems that transmit force in a favourable manner to the femur may minimise periprosthetic fractures. Finite element analysis (FEA) is a computerised method that analyses the effect of forces applied to a structure with complex shape. Our aim was to apply FEA to compare primary THA cementless stem designs and their association with periprosthetic fracture risk. Methods: 3-dimensional (3D) models of a Dorr Type A femur and 5 commonly used primary THA cementless stem designs (short single wedge, standard-length single wedge, modular, double-wedge metaphyseal filling, and cylindrical fully coated) were developed using computed tomography (CT) imaging. Implant insertion, single-leg stance, and twisting with a planted foot were simulated. FEA was performed, and maximum femoral strain along the implant-bone interface recorded. Results: Femoral strain was highest with short single-wedge stem design (0.3850) and lowest with standard-length single-wedge design (0.0520). Location of maximum femoral strain varied by stem design, but not with implant insertion, single-leg stance, or twisting with a planted foot. Strain was as high during implant insertion as with single-leg stance or twisting with a planted foot. Conclusions: Our results suggest the risk of intraoperative and postoperative periprosthetic fracture with THA in a Dorr A femur is highest with short single-wedge stems and lowest with standard-length single-wedge stems. Consideration may be given to minimising the use of short single-wedge stems in THA. Implant-specific sites of highest strain should be carefully inspected for fracture.


Sign in / Sign up

Export Citation Format

Share Document