scholarly journals Spatial Variability Assessment on The High-resolution Chlorophyll-a Extraction from Landsat 8and Sentinel 2 Imageries in Johor Waters

2020 ◽  
Vol 2 ◽  
pp. 38-43
Author(s):  
Fatin Nabihah Syahira Ridzuan ◽  
Mohd Nadzri Md Reba ◽  
Monaliza Mohd Din ◽  
Mazlan Hashim ◽  
Po Teen Lim ◽  
...  

High resolution Chlorophyll-a (Chl-a) can indicate the trophic status of the water and provide useful information on optical features of water body in water quality monitoring. Remote sensing has great potential to offer the spatial and temporal coverage needed. Over the last decades the Sea WIFS and MODIS were applied, but not suitable due to the low spatial resolution for monitoring Chl-a in coastal area. However, the retrieval of Chl-a in the coastal region is usually challenging due to the other in-water substances regardless of Chl-a, hence resulting in the satellite retrieved Chl-a overestimation. By the advancement of the Sentinel-2 and Landsat 8 satellites, continuous high resolution optical imageries have served for remarkable coastal mapping capability thanks to the spectroscopic capability certain spectral bands and as high as 10-meter spatial resolution. This paper aims to evaluate the performance of the SEADASS and SNAP processor for Chl-a estimation from the Operational Land Imager (OLI)and MultiSpectral Instrument(MSI) data in Johor waters. The representative models, in standard algorithm OC3and C2RCC, were adapted to retrieve Chl-a concentration. The statistical regression has shown that these algorithms give an acceptable Chl-a estimation at medium and high resolution with R2=0.44 from OC3and R2=0.55from C2RCC comparing to the in-situ data. Despite of the spatial, temporal and spectral variability, this paper shows that OLI and MSI could provide Chl-a mapping capability at suitable Chl-a estimation techniques.


2020 ◽  
Vol 12 (15) ◽  
pp. 2437 ◽  
Author(s):  
Willibroad Gabila Buma ◽  
Sang-Il Lee

Much effort has been applied in estimating the concentrations of chlorophyll-a (Chl a) in lakes. The optical complexity and lack of in situ data complicate estimating Chl a in such water bodies. We compared four established satellite reflectance algorithms—the two-band and three-band algorithms (2BDA, 3BDA), fluorescence line height (FLH), and normalized difference chlorophyll index (NDCI)—to estimate Chl a concentration in Lake Chad. We evaluated the performance and applicability of Landsat-8 (L8) and Sentinel-2 (S2) images with the four Chl a estimation algorithms. For accuracy, we compared the concentration levels from the four algorithms to those from Worldview-3 (WV3) images. We identified two promising algorithms that could be used alongside L8 and S2 satellite images to monitor Chl a concentrations in Lake Chad. With an averaged R2 of 0.8, the 3BDA and NDCI Chl a algorithms performed accurately with S2 and L8 images. For the S2 and L8 images, 3BDA had the highest performance when compared to the WV3 estimates. We demonstrate the usefulness of sensor images in improving water quality information for areas that are difficult to access or when conventional data are limited.



2020 ◽  
Author(s):  
Manivasagam Vellalapalayam Subramanian ◽  
Gregoriy Kaplan ◽  
Offer Rozenstein

<p>The availability of public-domain high-resolution satellite imagery such as Sentinel-2 and Landsat-8 has increased earth observation (EO) studies across the globe. Empirically combining different EO sensor data into a single dataset increases the temporal coverage, which is useful for land-cover monitoring. In this study, a transformation model was developed for Sentinel-2 and Vegetation and Environmental New micro Spacecraft (VENμS) imagery over Israel. Both sensors offer high spatio-temporal resolution imagery, i.e., VENμS has a 10m spatial resolution with a two-day revisit period, and Sentinel-2 has a 10-20 m spatial resolution with a five-day revisit period. Near-simultaneously acquired imagery was employed for the transformation model development. The model coefficients were derived for the overlapping spectral regions of both sensors. Further, the transformation model performance was tested using various statistical measures, namely, orthogonal distance regression (ODR), spectral angle mapper (SAM), and mean absolute difference (MAD). The validation results highlighted that MAD values were reduced between Sentinel-2 and transformed VENμS reflectance. Similarly, the ODR slope values became closer to one, and the overall spectral similarity increased as demonstrated by a decrease in SAM values. This transformation function creates a unified reflectance dataset in the form of a dense time-series of observation, especially useful for vegetation monitoring.</p>



2021 ◽  
Author(s):  
Dimitry Van der Zande ◽  
Kerstin Stelzer ◽  
Martin Böttcher ◽  
João Felipe Cardoso dos Santos ◽  
Carole Lebreton ◽  
...  

<p>High-quality satellite-based ocean colour products can provide valuable support and insights in management and monitoring of coastal ecosystems. Today’s availability of Earth Observation (EO) data is unprecedented including traditional medium resolution ocean colour systems (e.g. SeaWiFS, MODIS-AQUA, MERIS, Sentinel-3/OLCI), high resolution land sensors (e.g. Sentinel-2/MSI, Landsat-8/OLI, Pleiades) and geostationary satellites (e.g. SEVIRI). Each of these sensors offers specific advantages in terms of spatial, temporal or radiometric characteristics.</p><p>As a new production unit, the high resolution coastal service will be integrated in CMEMS. It offers 12 different products which are covered within the Ocean Colour Thematic Assembly Centre (OCTAC). The products can be categorized in two groups: 1) near real time (NRT) and Multi-Year near real time (MYNRT). The products are generated the coastal waters (20km stripe for the coastline) for all European Seas and are provided in 100m spatial resolution. All products are based on Sentinel-2 MSI data. The primary OCTAC variable from which it is virtually possible to derive all the geophysical and transparency products is the spectral Remote Sensing Reflectance (RRS). This, together with the Particulate Backscatter Coefficient (BBP), constitute the category of the optics products. The spectral BBP product is generated from the RRS products using a quasi-analytical algorithm. The transparency products include turbidity (TUR) and Suspended Particulate Matter (SPM) concentration. They are retrieved through the application of automated switching algorithms to the RRS spectra adapted to varying water conditions. The geophysical product consists of the Chlorophyll-a concentration (CHL) retrieved via a multi-algorithm approach with optimized quality flagging. The NRT products are generally provided withing 24 hours after end of the acquisition day, while monthly averaged products are provided few days after end of the respective month. A third group of products are daily gap-filled products which are provided once in a quarter. Validation of the variables has been performed by match-up analysis with in situ data as well as by comparison of the high resolution products with the well established Low Resolution CMEMS Ocean Colour products. The products will be introduced in the CMEMS service by May 2021. We will present the products themselves as well as the validation results for the different variables. The known limitations will be reported in order to provide a full picture of the new service.</p>



2021 ◽  
Vol 13 (9) ◽  
pp. 1847
Author(s):  
Abubakarr S. Mansaray ◽  
Andrew R. Dzialowski ◽  
Meghan E. Martin ◽  
Kevin L. Wagner ◽  
Hamed Gholizadeh ◽  
...  

Agricultural runoff transports sediments and nutrients that deteriorate water quality erratically, posing a challenge to ground-based monitoring. Satellites provide data at spatial-temporal scales that can be used for water quality monitoring. PlanetScope nanosatellites have spatial (3 m) and temporal (daily) resolutions that may help improve water quality monitoring compared to coarser-resolution satellites. This work compared PlanetScope to Landsat-8 and Sentinel-2 in their ability to detect key water quality parameters. Spectral bands of each satellite were regressed against chlorophyll a, turbidity, and Secchi depth data from 13 reservoirs in Oklahoma over three years (2017–2020). We developed significant regression models for each satellite. Landsat-8 and Sentinel-2 explained more variation in chlorophyll a than PlanetScope, likely because they have more spectral bands. PlanetScope and Sentinel-2 explained relatively similar amounts of variations in turbidity and Secchi Disk data, while Landsat-8 explained less variation in these parameters. Since PlanetScope is a commercial satellite, its application may be limited to cases where the application of coarser-resolution satellites is not feasible. We identified scenarios where PS may be more beneficial than Landsat-8 and Sentinel-2. These include measuring water quality parameters that vary daily, in small ponds and narrow coves of reservoirs, and at reservoir edges.



Author(s):  
Alessandro Rhadamek Alves Pereira ◽  
João Batista Lopes ◽  
Giovana Mira de Espindola ◽  
Carlos Ernando da Silva

Recently, the Poti river mouth region has experienced environmental impacts that resulted in a change of landscape in its dry season, highlighting the eutrophication and proliferation of phytoplankton, algae, cyanobacteria and aquatic plants. Considering the aspects related to water-quality monitoring in the semiarid region of Brazil from remote sensing, this study aimed to evaluate the performance of Sentinel-2A satellite data in the retrieval of chlorophyll-a concentration in Poti River in Teresina, Piaui, Brazil. The chlorophyll-a concentration retrieval and mapping methodology involved the study of the water surface reflectance in Sentinel-2A images and their correlation with the chlorophyll-a data collected in situ during the years 2016 and 2017. The results generated by the Chl-1, Ha et al. (2017), Chl-2, Page et al. (2018), and Chl-3, Kuhn et al. (2019) equations show the need for calibrating the algorithms used for the Poti River water components. However, the empirical algorithm Chl-2 shows a correlation has been established to identify the spatiotemporal variation of chlorophyll-a concentration along the Poti River broadly and not punctually. The spatial distribution of this pigment in maps derived from Sentinel-2A is consistent with the pattern of occurrence determined by the in situ data. Therefore, the MSI sensor proved to be a tool suitable for the retrieval and monitoring of chlorophyll-a concentration along the Poti River.



2021 ◽  
Vol 13 (20) ◽  
pp. 4140
Author(s):  
Hao Lin ◽  
Siwei Li ◽  
Jia Xing ◽  
Jie Yang ◽  
Qingxin Wang ◽  
...  

Recent studies have shown that the high-resolution satellite Landsat-8 has the capability to retrieve aerosol optical depth (AOD) over urban areas at a 30 m spatial resolution. However, its long revisiting time and narrow swath limit the coverage and frequency of the high resolution AOD observations. With the increasing number of Earth observation satellites launched in recent years, combining the observations of multiple satellites can provide higher temporal-spatial coverage. In this study, a fusing retrieval algorithm is developed to retrieve high-resolution (30 m) aerosols over urban areas from Landsat-8 and Sentinel-2 A/B satellite measurements. The new fusing algorithm was tested and evaluated over Beijing city and its surrounding area in China. The validation results show that the retrieved AODs show a high level of agreement with the local urban ground-based Aerosol Robotic Network (AERONET) AOD measurements, with an overall high coefficient of determination (R2) of 0.905 and small root mean square error (RMSE) of 0.119. Compared with the operational AOD products processed by the Landsat-8 Surface Reflectance Code (LaSRC-AOD), Sentinel Radiative Transfer Atmospheric Correction code (SEN2COR-AOD), and MODIS Collection 6 AOD (MOD04) products, the AOD retrieved from the new fusing algorithm based on the Landsat-8 and Sentinel-2 A/B observations exhibits an overall higher accuracy and better performance in spatial continuity over the complex urban area. Moreover, the temporal resolution of the high spatial resolution AOD observations was greatly improved (from 16/10/10 days to about two to four days over globe land in theory under cloud-free conditions) and the daily spatial coverage was increased by two to three times compared to the coverage gained using a single sensor.



2020 ◽  
Vol 12 (3) ◽  
pp. 460 ◽  
Author(s):  
Mingyu Liu ◽  
Chuan Xiong ◽  
Jinmei Pan ◽  
Tianxing Wang ◽  
Jiancheng Shi ◽  
...  

Currently, the accurate estimation of the maximum snow water equivalent (SWE) in mountainous areas is an important topic. In this study, in order to improve the accuracy and spatial resolution of SWE reconstruction in alpine regions, the Sentinel-2(MSI) and Landsat 8(OLI) satellite data with the spatial resolution of tens of meters are used instead of the Moderate-resolution Imaging Spectroradiometer (MODIS) data so that the pixel mixing problem is avoided. Meanwhile, geostationary satellite-based and topographic-corrected incoming shortwave radiation is used in the restricted degree-day model to improve the accuracy of radiation inputs. The seasonal maximum SWE accumulation of a river basin in the winter season of 2017–2018 is estimated. The spatial and temporal characteristics of SWE at a fine spatial and temporal resolution are then analyzed. And the results of reconstruction model with different input parameters are compared. The results showed that the average maximum SWE of the study area in 2017–2018 was 377.83 mm and the accuracy of snow cover, air temperature and the radiation parameters all affects the maximum SWE distribution on magnitude, elevation and aspect. Although the accuracy of other forcing parameters still needs to be improved, the estimation of the local maximum snow water equivalent in mountainous areas benefits from the application of high-resolution Sentinel-2 and Landsat 8 data. The joint usage of high-resolution remote sensing data from different satellites can greatly improve the temporal and spatial resolution of snow cover and the spatial resolution of SWE estimation. This method can provide more accurate and detailed SWE for hydrological models, which is of great significance to hydrology and water resources research.



2021 ◽  
Vol 13 (10) ◽  
pp. 1944
Author(s):  
Xiaoming Liu ◽  
Menghua Wang

The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite has been a reliable source of ocean color data products, including five moderate (M) bands and one imagery (I) band normalized water-leaving radiance spectra nLw(λ). The spatial resolutions of the M-band and I-band nLw(λ) are 750 m and 375 m, respectively. With the technique of convolutional neural network (CNN), the M-band nLw(λ) imagery can be super-resolved from 750 m to 375 m spatial resolution by leveraging the high spatial resolution features of I1-band nLw(λ) data. However, it is also important to enhance the spatial resolution of VIIRS-derived chlorophyll-a (Chl-a) concentration and the water diffuse attenuation coefficient at the wavelength of 490 nm (Kd(490)), as well as other biological and biogeochemical products. In this study, we describe our effort to derive high-resolution Kd(490) and Chl-a data based on super-resolved nLw(λ) images at the VIIRS five M-bands. To improve the network performance over extremely turbid coastal oceans and inland waters, the networks are retrained with a training dataset including ocean color data from the Bohai Sea, Baltic Sea, and La Plata River Estuary, covering water types from clear open oceans to moderately turbid and highly turbid waters. The evaluation results show that the super-resolved Kd(490) image is much sharper than the original one, and has more detailed fine spatial structures. A similar enhancement of finer structures is also found in the super-resolved Chl-a images. Chl-a filaments are much sharper and thinner in the super-resolved image, and some of the very fine spatial features that are not shown in the original images appear in the super-resolved Chl-a imageries. The networks are also applied to four other coastal and inland water regions. The results show that super-resolution occurs mainly on pixels of Chl-a and Kd(490) features, especially on the feature edges and locations with a large spatial gradient. The biases between the original M-band images and super-resolved high-resolution images are small for both Chl-a and Kd(490) in moderately to extremely turbid coastal oceans and inland waters, indicating that the super-resolution process does not change the mean values of the original images.



2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Wasir Samad Daming ◽  
Muhammad Anshar Amran ◽  
Amir Hamzah Muhiddin ◽  
Rahmadi Tambaru

Surface chlorophyll-a (Chl-a) distribution have been analyzed with seasonal variation during southeast monsoon in southern part of Makassar Strait and Flores Sea. Satellite data of Landsat-8 is applied to this study to formulate the distribution of chlorophyll concentration during monsoonal wind period. The distribution of chlorophyll concentration was normally peaked condition in August during southeast monsoon. Satellite data showed that a slowdown in the rise of the distribution of chlorophyll in September with a lower concentration than normal is likely due to a weakening the strength of southeast trade winds during June – July – August 2016. Further analysis shows that the southern part of the Makassar strait is likely occurrence of upwelling characterized by increase in surface chlorophyll concentrations were identified as the potential area of fishing ground.



Author(s):  
A. Manuel ◽  
A. C. Blanco ◽  
A. M. Tamondong ◽  
R. Jalbuena ◽  
O. Cabrera ◽  
...  

Abstract. Laguna Lake, the Philippines’ largest freshwater lake, has always been historically, economically, and ecologically significant to the people living near it. However, as it lies at the center of urban development in Metro Manila, it suffers from water quality degradation. Water quality sampling by current field methods is not enough to assess the spatial and temporal variations of water quality in the lake. Regular water quality monitoring is advised, and remote sensing addresses the need for a synchronized and frequent observation and provides an efficient way to obtain bio-optical water quality parameters. Optimization of bio-optical models is done as local parameters change regionally and seasonally, thus requiring calibration. Field spectral measurements and in-situ water quality data taken during simultaneous satellite overpass were used to calibrate the bio-optical modelling tool WASI-2D to get estimates of chlorophyll-a concentration from the corresponding Landsat-8 images. The initial output values for chlorophyll-a concentration, which ranges from 10–40 μg/L, has an RMSE of up to 10 μg/L when compared with in situ data. Further refinements in the initial and constant parameters of the model resulted in an improved chlorophyll-a concentration retrieval from the Landsat-8 images. The outputs provided a chlorophyll-a concentration range from 5–12 μg/L, well within the usual range of measured values in the lake, with an RMSE of 2.28 μg/L compared to in situ data.



Sign in / Sign up

Export Citation Format

Share Document