scholarly journals Characterization of Advanced Tilling and Its Application in Cotton

Among all the fibre crops, cotton is most important economic fibre crop. It is known as white gold because it contributes in the economic, industrial and agricultural sectors. In GDP, it contributes to about 1.6% and have share 7.8% in agricultural products. Pakistan is ranked 5th in world in term of consumption and has 4th in term of total cotton production in 2015-2016. The seed cotton yield and production are stagnant for more than decade in Pakistan, biotic and abiotic stresses are considered as major reasons of this stagnancy. Mutagenesis is an important tool in crop improvement. In breeding programs, mutation is an important tool for creating the variations. Powerful reverse genetic strategies allow the detection of induced point mutation. TILLING (Target Induced Local Lesions in Genomes) is genomic approach which is used for the screening of mutant and germplasm collection for the for the allelic variant in targeted gene. This kind of research explores an advanced TILLING population for various parameters. The main advantage of TILLING is that this technique can be used for any plant species, irrespective of its genome size, ploidy level and method of propagation.

2011 ◽  
Vol 68 (1) ◽  
pp. 42-49 ◽  
Author(s):  
Patrícia Coelho de Souza Leão ◽  
Cosme Damião Cruz ◽  
Sérgio Yoshimitsu Motoike

The conservation and characterization of grape (Vitis spp) genetic resources in germplasm banks have been the basis of its use in breeding programs that result in development of new cultivars. There are at least 10,000 grape cultivars kept in germplasm collection. The genetic diversity in 136 table grape accessions from the state of Bahia, Brazil, was evaluated. Continuous and discrete morphoagronomic traits were assessed. The clustering analysis by the Tocher otimization method resulted in 30 clusters (considering continuous morphoagronomic traits), and 9 clusters (taking into consideration multicategorical traits). There was no agreement between clusters obtained by both, continuous or discrete phenotypic descriptors, independent of the cluster method analysis used. A satisfactory genetic variability among the table grape accessions was observed.


2020 ◽  
Author(s):  
Chong Yang ◽  
Juanjuan Li ◽  
Faisal Islam ◽  
Luyang Hu ◽  
Jiansu Wang ◽  
...  

Abstract Background: WRKY transcription factors play important roles in various physiological processes and stress responses in flowering plants. However, the information about WRKY genes in Helianthus annuus L. (common sunflower) is limited. Results: Ninety WRKY (HaWRKY) genes were identified and renamed according to their locations on chromosomes. Further phylogenetic analyses classified them into four main groups including a species-specific WKKY group and HaWRKY genes within same group or subgroup generally showed similar exon-intron structures and motif compositions. The tandem and segmental duplication possibly contributed to the diversity and expansion of HaWRKY gene families. Synteny analyses of sunflower WRKY genes provided deep insight to the evolution of HaWRKY genes. Transcriptomic and qRT-PCR analyses of HaWRKY genes displayed distinct expression patterns in different plant tissues, as well as under various abiotic and biotic stresses. Conclusions: Ninety WRKY (HaWRKY) genes were identified from H. annuus L. and classified into four groups. Structures of HaWRKY proteins and their evolutionary characteristics were also investigated. The characterization of HaWRKY genes and their expression profiles under biotic and abiotic stresses in this study provide a foundation for further functional analyses of these genes. Therefore, these functional genes related to increasing the plant tolerance or improving the crop quality, could be applied for the crop improvement..


2020 ◽  
Author(s):  
Chong Yang ◽  
Juanjuan Li ◽  
Faisal Islam ◽  
Luyang Hu ◽  
Jiansu Wang ◽  
...  

Abstract Background: WRKY transcription factors play important roles in various physiological processes and stress responses in flowering plants. However, the information about WRKY genes in Helianthus annuus L. (common sunflower) is limited. Results: Ninety WRKY (HaWRKY) genes were identified and renamed according to their locations on chromosomes. Further phylogenetic analyses classified them into four main groups including a species-specific WKKY group and HaWRKY genes within same group or subgroup generally showed similar exon-intron structures and motif compositions. The tandem and segmental duplication possibly contributed to the diversity and expansion of HaWRKY gene families. Synteny analyses of sunflower WRKY genes provided deep insight to the evolution of HaWRKY genes. Transcriptomic and qRT-PCR analyses of HaWRKY genes displayed distinct expression patterns in different plant tissues, as well as under various abiotic and biotic stresses. Conclusions: Ninety WRKY (HaWRKY) genes were identified from H. annuus L. and classified into four groups. Structures of HaWRKY proteins and their evolutionary characteristics were also investigated. The characterization of HaWRKY genes and their expression profiles under biotic and abiotic stresses in this study provide a foundation for further functional analyses of these genes and will be beneficial to crop improvement.


Genome ◽  
2010 ◽  
Vol 53 (5) ◽  
pp. 331-336 ◽  
Author(s):  
Nathalie Piperidis ◽  
Jian-wen Chen ◽  
Hai-hua Deng ◽  
Li-Ping Wang ◽  
Phillip Jackson ◽  
...  

Within Erianthus , a genus close to Saccharum , the species E. arundinaceus has the potential to contribute valuable traits to sugarcane, including adaptation to biotic and abiotic stresses and ratooning ability. Sugarcane breeders have tried for a long time to use Erianthus species in their breeding programs but until recently were constrained by a lack of fertile Saccharum × Erianthus hybrids. We report here for the first time the chromosome composition of fertile Saccharum officinarum  × E. arundinaceus F1, BC1 (F1 × sugarcane cultivar), and BC2 (BC1 × sugarcane cultivar) hybrids. The F1 and BC2 resulted from n + n chromosome transmission, while the BC1 resulted from 2n + n transmission. In the BC1 clones, the number of E. arundinaceus chromosomes ranged from 21 to 30, and in the BC2 clones, the number ranged from 14 to 15, revealing cases of chromosome loss. No recombination events between Saccharum and Erianthus chromosomes were observed in either the BC1 or BC2 clones. The implications of these results for introgression of genes from E. arundinaceus in sugarcane breeding programs are discussed. We propose a strategy to identify the agronomic value of chromosomes from E. arundinaceus and to conduct targeted breeding based on this information.


Italus Hortus ◽  
2019 ◽  
Vol 26 ◽  
pp. 9-20
Author(s):  
José Quero Garcia

Modern cherry breeding is relatively recent, as compared to other major crops. Nevertheless, in the last 30 years, numerous cultivars have been released, which has contributed to a significant increase in cherry production. The most important public breeding programs launched during the XXth century remain still active and new programs emerge in countries such as Chile, China or Spain. More recently, private actors are playing an increasingly important role, in particular those located in California, which conduct breeding preferentially for early-maturing and low-chilling cultivars. Nevertheless, cherry production faces significant threats, either related to the consequences of the global climate change (and in particular to the global warming) or to the emergence of new pest and diseases (such as for example the fly Drosophila suzukii). Hence, breeder have to incorporate new traits into their selection schemes, on top of the traditional and unavoidable ones, such as productivity, fruit size and firmness, tasting quality, etc. However, because of specific characteristics and of the length of the juvenility period, breeding has been traditionally limited to a rather narrow genetic base. Thus, it might not be straightforward to find interesting alleles in the breeder’ portfolios for traits of adaptability to biotic and abiotic stresses. For this reason, the preservation and characterization of germplasm resources should be considered as an urgent priority. With the recent technological developments in the area of molecular biology and bioinformatics, the use of DNA-based information, through molecular marker-assisted selection approaches, has become a reality for cherry breeder. Although important research efforts are still needed in order to disentangle the genetic determinism of the main traits of agronomic interest, these methodologies allow already significant reductions in the breeding costs. In this paper, the major goals and methodologies currently considered by sweet cherry breeder will be reviewed, and perspectives with regards to new directions and needs will be briefly developed.


2021 ◽  
Vol 12 (2) ◽  
pp. 372-378
Author(s):  
Njukeng Jetro Nkengafac ◽  
Ndille Claurence Nkumbe

This study was carried out to estimate leaf morphological diversity of some accessions/clones from IRRDB 1981 Hevea germplasm collection conserved at IRAD Ekona, to determine the importance of leaf morphological descriptors in differentiating accessions/clones. A total of 36 clones/ accessions were characterized using 6 leaf morphological descriptors. Analysis of variance showed that there were significant differences in the leaf morphological parameters for the studied clones. The Principal Component Analysis (PCA) showed that all leaf descriptors were informative and contributed significantly to the variation. The first 2 Principal Component scores (PCs) accounted for 88% of the total variation. The cluster analysis based on significant PCs grouped all accessions and clones in to 6 main clusters at the distance of 1.5. This study permits the characterization of Hevea accessions and clones in to diverse groups using leaf morphological descriptors; hence this will be advantageous for production of diverse genotypes during breeding programs to broaden the Hevea gene pool.


2021 ◽  
pp. 1-15
Author(s):  
Zengzhi Si ◽  
Yake Qiao ◽  
Kai Zhang ◽  
Zhixin Ji ◽  
Jinling Han

Sweetpotato, <i>Ipomoea batatas</i> (L.) Lam., is an important and widely grown crop, yet its production is affected severely by biotic and abiotic stresses. The nucleotide binding site (NBS)-encoding genes have been shown to improve stress tolerance in several plant species. However, the characterization of NBS-encoding genes in sweetpotato is not well-documented to date. In this study, a comprehensive analysis of NBS-encoding genes has been conducted on this species by using bioinformatics and molecular biology methods. A total of 315 NBS-encoding genes were identified, and 260 of them contained all essential conserved domains while 55 genes were truncated. Based on domain architectures, the 260 NBS-encoding genes were grouped into 6 distinct categories. Phylogenetic analysis grouped these genes into 3 classes: TIR, CC (I), and CC (II). Chromosome location analysis revealed that the distribution of NBS-encoding genes in chromosomes was uneven, with a number ranging from 1 to 34. Multiple stress-related regulatory elements were detected in the promoters, and the NBS-encoding genes’ expression profiles under biotic and abiotic stresses were obtained. According to the bioinformatics analysis, 9 genes were selected for RT-qPCR analysis. The results revealed that <i>IbNBS75</i>, <i>IbNBS219</i>, and <i>IbNBS256</i> respond to stem nematode infection; <i>Ib­NBS240</i>, <i>IbNBS90</i>, and <i>IbNBS80</i> respond to cold stress, while <i>IbNBS208</i>, <i>IbNBS71</i>, and <i>IbNBS159</i> respond to 30% PEG treatment. We hope these results will provide new insights into the evolution of NBS-encoding genes in the sweetpotato genome and contribute to the molecular breeding of sweetpotato in the future.


Sign in / Sign up

Export Citation Format

Share Document