scholarly journals Synthesis and antimicrobial evaluation of some 4-quinolinylazo-N-pyrimidinyl benzenesulfonamide derivatives

2019 ◽  
Vol 10 (1) ◽  
pp. 4846-4852

Ten new compounds of quinoline clubbed with sulfonamide moiety were synthesized to be used as antimicrobial agents. Therefore, the diazotized N-(pyrimidin-2-yl)-benzenesulfonamide was diazocoupled with 8-hydroxyquinoline to furnish 4-(8-hydroxyquinolin-5-yl)-N-(pyrimidin-2-yl)benzenesulfonamide (3) which underwent chloroacetylation by chloroacetyl chloride to give the corresponding O-chloroacetylated product 6. The reactions of quinolinyl 2-chloroacetate derivative 6 with different nucleophiles (ethyl 2-mercaptoacetate, 2-mercapto-4,6-dimethylnicotinonitrile, o-aminothiophenol and/or malononitrile) were studied and utilized to pick up various heterocyclic systems 7, 10, 12 and 14. The chemical structures of newly prepared quinoline-containing scaffolds have been confirmed based on their spectral data (IR, 1H NMR and MS) and have been tested for their antimicrobial activity. The results showed that compounds 5d, 6, 7 and 14 displayed the highest activity against Gram-positive bacteria.

2020 ◽  
Vol 13 (7) ◽  
pp. 3390-3397
Author(s):  
Regina Kemunto Mayaka ◽  
Alice Wanjiku Njue ◽  
Moses Kiprotich Langat ◽  
Peter Kiplagat Cheplogoi ◽  
Josiah Ouma Omolo

The emergence of antibiotic resistant pathogens has continuously increased, leading to a growing worldwide health threat due to infectious diseases. And therefore in our search for antibacterial and antifungal compounds from the polypore Ganoderma adspersum, the dried, ground fruiting bodies of G. adspersum were extracted with methanol and solvent removed in a rotary evaporator. The extract was suspended in distilled water, then partitioned using ethyl acetate solvent to obtain an ethyl acetate extract. The extract was fractionated and purified using column chromatographic method and further purification on sephadex LH20. The chemical structures were determined on the basis of NMR spectroscopic data from 1H and 13C NMR, HSQC, HMBC, 1H-1H COSY, and NOESY experiments. Antimicrobial activity against clinically important bacterial and fungal strains was assessed and zones of inhibition were recorded. Compound (1), ergosta-7,22-dien-3-one weakly inhibited the growth of Gram positive bacteria Streptococcus pneumonia and a fungus Cryptococcus neoformans. Compounds ergosta-7,22-dien-3-ol (2) and ergosta-5,7,22-trien-3-ol (3) also inhibited gram positive Streptococcus pyogenes bacteria.Keywords: Polypores, steroid compounds, antimicrobial activity.


2013 ◽  
Vol 57 (10) ◽  
pp. 4794-4800 ◽  
Author(s):  
Patrick A. M. Jansen ◽  
Pedro H. H. Hermkens ◽  
Patrick L. J. M. Zeeuwen ◽  
Peter N. M. Botman ◽  
Richard H. Blaauw ◽  
...  

ABSTRACTThe emergence of resistance against current antibiotics calls for the development of new compounds to treat infectious diseases. Synthetic pantothenamides are pantothenate analogs that possess broad-spectrum antibacterial activityin vitroin minimal media. Pantothenamides were shown to be substrates of the bacterial coenzyme A (CoA) biosynthetic pathway, causing cellular CoA depletion and interference with fatty acid synthesis. In spite of their potential use and selectivity for bacterial metabolic routes, these compounds have never made it to the clinic. In the present study, we show that pantothenamides are not active as antibiotics in the presence of serum, and we found that they were hydrolyzed by ubiquitous pantetheinases of the vanin family. To address this further, we synthesized a series of pantetheinase inhibitors based on a pantothenate scaffold that inhibited serum pantetheinase activity in the nanomolar range. Mass spectrometric analysis showed that addition of these pantetheinase inhibitors prevented hydrolysis of pantothenamides by serum. We found that combinations of these novel pantetheinase inhibitors and prototypic pantothenamides like N5-Pan and N7-Pan exerted antimicrobial activityin vitro, particularly against Gram-positive bacteria (Staphylococcus aureus,Staphylococcus epidermidis,Streptococcus pneumoniae, andStreptococcus pyogenes) even in the presence of serum. These results indicate that pantothenamides, when protected against degradation by host pantetheinases, are potentially useful antimicrobial agents.


2019 ◽  
Vol 70 (6) ◽  
pp. 1996-1999
Author(s):  
Catalin Araniciu ◽  
Smaranda Dafina Oniga ◽  
Cristina Ioana Stoica ◽  
Mariana Carmen Chifiriuc ◽  
Marcela Popa ◽  
...  

Considering the promising antimicrobial activity of compounds bearing the thiazole or the oxadiazole rings in their structures, we set out to obtain new antimicrobial molecules bearing the 2-(thiazol-5-yl)-1,3,4-oxadiazole schaffold. The structures of the 8 new compounds obtained was confirmed by physicochemical characterization including: 1H-NMR, MS and elemental analysis. Antimicrobial activity was investigated against 5 Gram-positive bacterial strains, 2 Gram-negative bacterial strains and 2 fungal strains. The newly synthesized compounds showed modest antimicrobial activity.


1989 ◽  
Vol 52 (9) ◽  
pp. 665-667 ◽  
Author(s):  
R. S. FARAG ◽  
Z. Y. DAW ◽  
F. M. HEWEDI ◽  
G. S. A. EL-BAROTY

Six spice essential oils (sage, rosemary, caraway, cumin, clove, and thyme) and their basic ingredients were tested for their inhibitory effect against 3 strains of Gram-negative bacteria, 4 strains of Gram-positive bacteria, one acid fast bacterium, and one yeast. Preliminary screening of antimicrobial activity of the essential oils was done using the filter paper disc agar diffusion method. The minimum inhibitory concentration for each essential oil against various micro-organisms was also measured. Very low concentrations (0.25 – 12 mg/ml) of the various essential oils were sufficient to prevent microbial growth. The data show that Gram-positive bacteria were more sensitive to the antimicrobial compounds in spices than Gram-negative. The inhibition zones of different microbial growth produced by various essential oils were similar to those produced by their basic compounds. Thyme and cumin oils possessed very strong antimicrobial activity compared with the other essential oils. There was a relationship between the chemical structures of the most abundant compounds in the essential oils under investigation and the antimicrobial activity.


2005 ◽  
Vol 70 (6) ◽  
pp. 807-815 ◽  
Author(s):  
K.M. Thakar ◽  
D.J. Paghdar ◽  
P.T. Chovatia ◽  
H.S. Joshi

The synthesis of a group of thiohydantoins and thiobarbiturates derived from 2-N-arylthiopyridocarbonyl-3,5-dichlorobenzo[b]thiophene is described. The structures of the new compounds are supported by IR, 1H-NMR and mass spectral data. These compounds were tested in vitro for their antimicrobial activities.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Shailesh Mistry ◽  
Akhilesh Kumar Singh

Abstract Background For many years, various drugs have been used for the treatment of infectious diseases but some bacterial microorganisms have induced resistance to several drugs. In a search of new antimicrobial agents, a series of new steroidal hydrazones were designed and synthesized. Result The structures of the compounds were established based on the spectral data. The in vitro antimicrobial activity of some newly synthesized compounds against bacteria and fungi was studied. Conclusion New compounds showed better or similar antimicrobial activity. Designing more efficient steroidal hydrazones from ketosteroid based on the current study may successfully lead to the development of antimicrobial agent. Graphical abstract


2017 ◽  
Vol 23 (1) ◽  
Author(s):  
Mohamed Salah K. Youssef ◽  
Ahmed Abdou O. Abeed ◽  
Talaat I. El-Emary

AbstractWith an intention to synergize the antimicrobial activity of 1,3-diphenyl pyrazole and chromene derivatives, 20 hybrid compounds were synthesized and evaluated for their antimicrobial activity. Structures of the newly synthesized compounds were established by elemental analysis and spectral data. All compounds were evaluated for their antimicrobial activity against Gram positive and Gram negative bacteria and antifungal activity by a well diffusion method. Compounds


Author(s):  
Hemali Padalia ◽  
Tejas Rathod ◽  
Sumitra Chanda

  Objective: Infections caused by microorganisms that have become resistant to commonly used antibiotics have become a major nuisance globally. The problem of microbial resistance is increasing rapidly, and therefore there is an urgent need to develop novel antimicrobial agents from a natural source. The aim of the present study was to evaluate the antimicrobial activity of different solvent extracts of aerial part of Alysicarpus procumbens, Fimbristylis dichotoma, Saccharum spontaneum, Suaeda nigra, and Typha angustifolia against pathogenic microorganisms.Methods: The extraction was done by individual cold percolation method using five solvents of different polarity, viz., petroleum ether, ethyl acetate, acetone, methanol, and water (aqueous). The antimicrobial activity was done by agar well diffusion method against Gram-positive and Gram-negative bacteria and fungi.Results: All the plant solvent extracts showed varied level of antimicrobial activity against different microorganisms. All extracts of five plants showed better antibacterial activity than antifungal activity; Gram-positive bacteria were more susceptible than Gram-negative bacteria.Conclusion: The polarity of solvent greatly influences extractive yield and antimicrobial activity of medicinal plants. The best activity was shown by solvent extracts of S. nigra. Hence, it can be considered as good source of antimicrobial agents.


2018 ◽  
Vol 15 (8) ◽  
pp. 1161-1170 ◽  
Author(s):  
Ameen Ali Abu-Hashem ◽  
Rasha A. M. Faty

Background: 1, 3, 4-thiadiazoles, 1, 3, 4-thiadiazines and thienopyrimidines have newly attracted attention due to their forceful pharmacological activities. They showed antimicrobial, antiviral, analgesic and anti-inflammatory properties. Objective: The aim of this research is to synthesize new thiadiazolothienopyrimidines (2-10), thienopyrimidothiadiazines (11-15), quinoxaline-thienopyrimidinones (16) and thienopyrimido- thiadiazinoquinoxalinones (17) via effectual high yield procedure for assessing their antimicrobial activity. Method: A series of new 1, 3, 4-thiadiazolothienopyrimidines, thienopyrimidothiadiazines and thienopyrimidothiadiazinoquinoxalinones was prepared from 6-acetyl-3-amino-5-methyl-2-thioxo-2, 3-dihydrothieno [2, 3-d] pyrimidin-4(1H)-one (1) as the beginning material. Results: The 1, 3, 4-thiadiazoles, 1, 3, 4-thiadiazines derivatives (1-17) were synthesized in adequate to good yields (60-85%) in a stepwise effectual procedure under condition. The chemical structures of these new compounds were confirmed via many spectroscopic techniques as UV, IR, NMR, mass spectra and elemental analysis. In vitro, antimicrobial was evaluated for the synthesized compounds using minimal inhibitory concentration of these compounds against bacteria and fungi. Conclusion: The 1, 3, 4-thiadiazole and 1, 3, 4-thiadiazine derivatives (15-17) exhibited higher antimicrobial activity (Gram-positive, Gram-negative bacteria and fungi) compared with the standard antibiotic drugs; Levofloxacin (Tavanic) and Nystatin.


2019 ◽  
Vol 15 (1) ◽  
pp. 114-119 ◽  
Author(s):  
Rakesh Kumar ◽  
Shailendra Patil

Background:Diseases caused by microbial infections are very common worldwide. Although the search of innovative antimicrobial agents is the current focus for the researchers, the treatment of infectious diseases remains an important public health issue and a challenging problem in front of medicinal chemist.Methods:A series of 2-(4-hydroxyphenyl)-3-(4-(4-nitrophenyl) thiazol-2-yl)thiazolidin-4-one derivatives (T1-T10) was designed and synthesized. All the titled compounds were evaluated for their antimicrobial potential. Antimicrobial activity was performed by tube dilution methods against Gram negative Escherichia coli MTCC 443 (E. Coli), Gram positive bacteria: Staphylococcus aureus MTCC 3160 (S. aureus) and Bacillus subtilis MTCC 441 (B. Subtilis), and fungal strains: Aspergillus niger MTCC 281 (A. niger) and Candida albicans MTCC 227 (C. albicans).Results:Among the synthesized derivatives, compounds 2, 4 and 10 were found to be most active antimicrobial agents.Conclusion:In conclusion, a series of 2-(phenyl)-3-(4-(phenyl)thiazol-2-yl)thiazolidin-4-ones have been designed and synthesized. All the titled compounds were evaluated for their in vitro antimicrobial activity against five representative microorganisms. The results of antimicrobial study indicated that the presence of nitro and chloro groups in aromatic ring improved antibacterial activity, whereas the presence of hydroxy group improved antifungal activity of substituted 4-thiazolidinone derivatives.


Sign in / Sign up

Export Citation Format

Share Document