scholarly journals Betanin: a promising molecule for biomedical applications

2020 ◽  
Vol 10 (3) ◽  
pp. 5392-5399

Plants with medicinal properties possess beneficial influences on health and disease. Different plant parts and extracts carry valuable active ingredients with pharmacological properties that lead to developing new drugs. Terminalia bellirica is among those plants that have been formulated as pharmaceutical products. This is attributed to its biologically active phenolics and tannins exhibiting analgesic, anti-hypertensive, anti-microbial, anti-diabetic, anti-oxidant, as well as, other pharmacological properties. Beetroot has been shown to be rich in nitrates with a positive impact on the cardiovascular system. Beetroot contains a number of useful ingredients as the free-radical scavenger ascorbic acid, the anti-inflammatory flavonoids and the anti-oxidant carotenoids. Moreover, beetroot is rich in the natural colorant betalains that are further classified into betacyanins and betaxanthins. Betanin, is one of the major constituents of beetroots that have been postulated to possess significant beneficial therapeutic effects in a number of conditions and diseases. However, several studies have demonstrated the relatively poor bioavailability of betanin upon oral administration. In the current review we aim to highlight some of the latest researches dealing with the therapeutic properties of betanin in different disease conditions, the possible mechanistic pathways beyond such beneficial effects and plausible strategies capable of enhancing its stability and bioavailability.

Author(s):  
MANJULA K SAXENA ◽  
NEERJA SINGH ◽  
SUDHIR KUMAR ◽  
DOBHAL MP ◽  
SOUMANA DATTA

Several biologically active secondary metabolites from aquatic plants have been extracted and identified using modern instrumental BioTechniques and used in various ways as flavors, food, additives, coloring agents, nutraceuticals, cosmetics, and also as unique source of pharma industries for the discovery or development of new drugs. From algae to aquatic macrophytes belonging to various categories, aquatic plants produce a variety of compounds such as polyketides, peptides, alkaloids, flavonoids, phenolic compounds, terpenes, steroids, quinones, tannins, coumarins, and essential oils commercially involving in antibiotic, antiviral, antioxidant, antifouling, anti-inflammatory, anticancer, cytotoxic, and antimitotic activities; thus making them a rich source of medicinal compounds. Moreover, they are comprehensively used in human therapy, veterinary, agriculture, scientific research, and in countless areas. Importantly these chemicals are exercised for developing new antimicrobial and cancer drugs. Furthermore, antioxidant molecules in aquatic plants and seaweeds have recently been acknowledged. This review contains a consolidated contemporary document consisting of entire knowledge available on pharmaceutical products of aquatic plants and highlights major differences among secondary metabolites found in aquatic (algae) and terrestrial plants.


2020 ◽  
Vol 8 (10) ◽  
Author(s):  
Nathan Roberts ◽  
Robert Brown ◽  
L. Buja ◽  
Priya Weerasinghe

Turmeric (Curcuma Longa) has a near 4000-year history of extensive medical use in South Asia. Its main physiologically active phytochemical is curcumin (diferuloylmethane), derived from the rhizome of turmeric. Curcumin is a hydrophobic polyphenol with a diketone moiety connecting two phenoxy rings. It is widely available, and exerts systemic and pleiotropic effects via several key mechanisms. Most famously, it is known to inhibit pro-inflammatory pathways such as PI3k/akt/NF-kB activation. It is also a potent antioxidant and free radical scavenger via a sequential proton loss electron transfer mechanism in ionizing solvents due to its extended conjugating ability across the entire molecule, and its ability to induce NRF-2. It has been implicated in the treatment of diseases ranging from asthma to various cancers, and is also a broad spectrum anti-microbial. COVID-19 is a novel beta-coronavirus that was declared a pandemic by the WHO in March, 2020. It is primarily a respiratory disorder, but it can spread hematogenously and effect many other organs such as the heart, nervous system, and kidneys. There is a significant intersection between the clinical manifestations of COVID-19 and curcumin’s therapeutic effects. In addition, curcumin has been shown to inhibit initial viral infectivity. Thus, there is potential for curcumin to safely both prevent and treat COVID-19 infection across the globe.


Author(s):  
Suresh Sulekha Dhanisha ◽  
Sudarsanan Drishya ◽  
Chandrasekharan Guruvayoorappan

Abstract The review describes botanical aspects, bioactive phytocompounds and pharmacological properties of different parts of Pithecellobium dulce, with special emphasis on the nutritional status of its fruits. The different parts of plant extract have been reported to possess anti-oxidant, anti-inflammatory, anti-microbial, anti-diabetic, cardio protective, anti-diarrhoeal, anti-ulcerogenic, larvicidal and ovicidal activities. Different parts of plant extracts were reported to contain several bioactive phytocompounds such as flavonoids, saponins, tannins, alkaloids etc. Natural products discovered so far served as a viable source for new drugs. Over the past few years, continued and perpetual attention of people has been paid to medicinal plants in connection with its remarkable importance in drug discovery. Plant products always remains a drug of choice for the identification of novel leads despite facing a tough competition from existing synthetic alternatives derived from combinatorial chemistry, owing to their efficacy, side effects, and safety. P. dulce is a highly acclaimed genus in traditional system of medicine because of its versatile nutraceutical and pharmacological properties. In this review we discuss in detail about nutritional and various therapeutic properties of P. dulce.


2000 ◽  
Vol 71 (1-2) ◽  
pp. 241-246 ◽  
Author(s):  
Alejandro Tapia ◽  
Gabriela Egly Feresin ◽  
Daniel Bustos ◽  
Luis Astudillo ◽  
Cristina Theoduloz ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1936
Author(s):  
Valentina Lodde ◽  
Alberto Maria Luciano ◽  
Giulia Musmeci ◽  
Ileana Miclea ◽  
Irene Tessaro ◽  
...  

Decreased oocyte quality is a major determinant of age-associated fertility decline. Similarly, individuals affected by early ovarian aging carry low-quality oocytes. Using an established bovine model of early ovarian aging, we investigated key features of ‘quality’ oocyte maturation, associated with the onset of egg aneuploidy and reproductive aging, such as histone modifications, mitochondria distribution and activity, reduced glutathione (GSH) content, and gap junction functionality. Bovine ovaries were classified according to the antral follicle count (AFC), and the retrieved oocytes were processed immediately or matured in vitro. We observed alterations in several cellular processes, suggesting a multifactorial etiology of the reduced oocyte quality. Furthermore, we performed a rescue experiment for one of the parameters considered. By adding cysteamine to the maturation medium, we experimentally increased the free radical scavenger ability of the ‘low competence’ oocytes and obtained a higher embryo development. Our findings show that adopting culture conditions that counteract the free radicals has a positive impact on the quality of ‘compromised’ oocytes. Specifically, cysteamine treatment seems to be a promising option for treating aging-related deficiencies in embryo development.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2724
Author(s):  
Aneta Krakowska-Sieprawska ◽  
Katarzyna Rafińska ◽  
Justyna Walczak-Skierska ◽  
Anna Kiełbasa ◽  
Bogusław Buszewski

To elaborate a complete extraction protocol for the enhanced release of biologically active compounds from plant cells, this study aimed to optimize together the parameters of the supercritical fluid extraction (SFE) process (temperature, pressure, and percentage of cosolvent) and enzymatic treatment of plant material (pH, enzyme concentration, time, and temperature) by response surface methodology (RSM). Medicago sativa L. was selected as a plant material due to its richness in phenolics and flavonoids. HPLC-MS/MS analysis allowed evaluating the content of individual bioactive compounds in obtained extracts. The total content of polyphenolic compounds in the extract obtained after two-step optimization was much higher (546 ± 21 µg/g) than in the extract obtained from non-hydrolyzed material (275 ± 23 µg/g) and in the extract obtained by maceration (162 ± 20 µg/g). Furthermore, it was evidenced that extract with the highest content of polyphenolic compounds can support the cellular antioxidant system both as a free radical scavenger and by stimulating the antioxidant enzyme system.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaohui Bai ◽  
Chi Zhang ◽  
Aiping Chen ◽  
Wenwen Liu ◽  
Jianfeng Li ◽  
...  

Glutamate is an important excitatory neurotransmitter in mammalian brains, but excessive amount of glutamate can cause “excitotoxicity” and lead to neuronal death. As bipolar neurons, spiral ganglion neurons (SGNs) function as a “bridge” in transmitting auditory information from the ear to the brain and can be damaged by excessive glutamate which results in sensorineural hearing loss. In this study, edaravone, a free radical scavenger, elicited both preventative and therapeutic effects on SGNs against glutamate-induced cell damage that was tested by MTT assay and trypan blue staining. Ho.33342 and PI double staining revealed that apoptosis as well as necrosis took place during glutamate treatment, and apoptosis was the main type of cell death. Oxidative stress played an important role in glutamate-induced cell damage but pretreatment with edaravone alleviated cell death. Results of western blot demonstrated that mechanisms underlying the toxicity of glutamate and the protection of edaravone were related to the PI3K pathway and Bcl-2 protein family.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 433
Author(s):  
Mauro Fiorini ◽  
Veronica Crognaletti ◽  
Omar Sabry ◽  
Lorenzo Scalise ◽  
Paolo Fattori

Biomedical engineering is employing hydrogels with increasingly exciting possibilities for the treatment and regeneration of pathologically altered, degenerated, or traumatized tissues. Still, the sterilization processes may undesirably change the chemical and physical properties of hydrogels through cross-linking reactions. This work aims to characterize a new method of producing polyethylene oxide (PEO) hydrogels exploiting hydroxy-tyrosol (HT), an anti-oxidant molecule derived from olive leaf and olive oil, as a free radical scavenger to either prevent or limit gamma-ray-induced cross-linking. For this purpose, we produced hydrogels with PEO with two different buffer solutions (phosphate and citrate), varying HT concentration. We analyzed hydrogel preparations before and after gamma-ray irradiation, assessing the viscosity through rheological analysis and the chemical changes through IR analysis. We performed high-performance liquid chromatography (HPLC) analysis to measure residual HT in hydrogels after irradiation. The obtained results show that radiation-induced cross-linking and increase in viscosity of PEO hydrogels can be prevented by tailoring the concentration of HT as a free radical scavenging agent. Irradiation only consumes small amounts of HT; its presence in polymeric hydrogels can significantly impact biomedical applications by its anti-oxidant and anti-microbial activities.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4244
Author(s):  
Bwalya Angel Witika ◽  
Pedzisai Anotida Makoni ◽  
Scott Kaba Matafwali ◽  
Larry Lawrence Mweetwa ◽  
Ginnethon Chaamba Shandele ◽  
...  

There is a dearth of natural remedies available for the treatment of an increasing number of diseases facing mankind. Natural products may provide an opportunity to produce formulations and therapeutic solutions to address this shortage. Curcumin (CUR), diferuloylmethane; I,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione is the major pigment in turmeric powder which has been reported to exhibit a number of health benefits including, antibacterial, antiviral, anti-cancer, anti-inflammatory and anti-oxidant properties. In this review, the authors attempt to highlight the biological and pharmacological properties of CUR in addition to emphasizing aspects relating to the biosynthesis, encapsulation and therapeutic effects of the compound. The information contained in this review was generated by considering published information in which evidence of enhanced biological and pharmacological properties of nano-encapsulated CUR was reported. CUR has contributed to a significant improvement in melanoma, breast, lung, gastro-intestinal, and genito-urinary cancer therapy. We highlight the impact of nano-encapsulated CUR for efficient inhibition of cell proliferation, even at low concentrations compared to the free CUR when considering anti-proliferation. Furthermore nano-encapsulated CUR exhibited bioactive properties, exerted cytotoxic and anti-oxidant effects by acting on endogenous and cholinergic anti-oxidant systems. CUR was reported to block Hepatitis C virus (HCV) entry into hepatic cells, inhibit MRSA proliferation, enhance wound healing and reduce bacterial load. Nano-encapsulated CUR has also shown bioactive properties when acting on antioxidant systems (endogenous and cholinergic). Future research is necessary and must focus on investigation of encapsulated CUR nano-particles in different models of human pathology.


Sign in / Sign up

Export Citation Format

Share Document