scholarly journals Fabrication of Drug-Loaded Starch-based Nanofibers via Electrospinning Technique

2020 ◽  
Vol 11 (3) ◽  
pp. 10801-10811

This paper reported the fabrication of starch-based nanofibers derived from various weight ratios (w:w) of native sago starch (SS) and poly (vinyl alcohol) (PVA) (0:100, 1:100, 3:100, and 5:100) using the electrospinning technique. The effects of electrospinning operation parameters on the surface morphology of SS/PVA nanofibers were observed by using Scanning Electron Microscopy (SEM). The smooth and bead-free SS/PVA nanofibers with fiber diameters within the range of 90 nm to 150 nm were produced under the optimized conditions. The paracetamol (PCM) was encapsulated into the SS/PVA nanofibers via the blending process. The SS/PVA nanofibers exhibited a maximum PCM loading capacity of 0.9573 mg.mg-1, and PCM was observed to release out from SS/PVA nanofibers slowly and steadily for 72 hours.

2019 ◽  
Vol 14 ◽  
pp. 155892501984322 ◽  
Author(s):  
Chengbo Huang ◽  
Ying Liu ◽  
Zhiguang Li ◽  
Rong Li ◽  
Xuehong Ren ◽  
...  

The main objective of this study was to develop antibacterial materials based on polyacrylonitrile for potential application in protective face masks to combat airborne pathogens. To achieve biocidal properties, 1-chloro-2, 2, 5, 5-tetramethyl-4-imidazolidinone as a kind of N-halamine was introduced into the polyacrylonitrile nanofibers by an electrospinning technique to form nanofibers by an electrospinning technique to form polyacrylonitrile/1-chloro-2, 2, 5, 5-tetramethyl-4-imidazolidinone-5% nanofibers. Scanning electron microscopy and Fourier transformed infrared spectroscopy were employed to characterize the structure of nanofibers. The antimicrobial efficacies of electrospinning nanofibers with 1-chloro-2, 2, 5, 5-tetramethyl-4-imidazolidinone against both Staphylococcus aureus and Escherichia coli O157:H7 were evaluated at different contact times. The antimicrobial efficacies against bioaerosol of S. aureus were also performed. The polyacrylonitrile/1-chloro-2, 2, 5, 5-tetramethyl-4-imidazolidinone-5% nanofibers possess excellent antimicrobial efficacies against bacteria bioaersol, and it has good air permeability.


2019 ◽  
Vol 107 (8) ◽  
pp. 725-735
Author(s):  
Hoda H. Saleh ◽  
Rehab Sokary ◽  
Zakaria I. Ali

Abstract Polyaniline (PANI) nanoparticles and PANI/poly vinyl alcohol (PVA) nanocomposite films were synthesized by the oxidative polymerization of aniline and ammonium peroxodisulfate (APS), as an oxidizing agent in aqueous medium. The PANI/PVA nanocomposite films were exposed to γ-irradiation after oxidative polymerization. Synthesized polyaniline (PANI) nanoparticles and PANI/PVA nanocomposite films were characterized by attenuated total reflectance infrared spectroscopy (FTIR-ATR), X-ray diffraction, high resolution scanning electron microscopy, (HRSEM) high resolution transmission electron microscopy, (HRTEM) and UV-VIS absorption spectroscopy. Energy band gap of PANI nanofibers was determined from Tauc’s plots which equal 4.2 eV. Scanning electron microscopy images show that chemically synthesized of polyaniline has nanofibers structure and irradiated PANI/PVA nanocomposite have a mixture of nanorod and nanosphere structures. The transmission electron microscopy show that chemically synthesized of polyaniline has average length in the range 34 ± 10 nm with less wide distribution, where as the irradiated PANI/PVA nanocomposite has coreshell structure.


2016 ◽  
Vol 46 (8) ◽  
pp. 1598-1615 ◽  
Author(s):  
M Gouda ◽  
AA Hebeish ◽  
AI Aljaafari

A radically new innovation was established for development of electromagnetic interference shielding. The innovation emphasis synthesis of carboxymethyl cellulose (CMC), carboxymethyl cellulose composite containing different metal nanoparticles (CMC-MNPs), and carboxymethyl cellulose nanofiber mat (CMC-NF) and carboxymethyl cellulose containing metal nanofiber mat (CMC-MNPs nanofiber mat) by electrospinning technique. Metal nanoparticles used include copper nanoparticles, iron nanoparticles, zinc nanoparticles, cadmium nanoparticles, and cobalt nanoparticles. Synthesized CMC–MNPs were characterized by using scanning electron microscopy coupled with high-energy dispersive X-ray and UV–visible spectroscopy that was used for confirmation of nanoparticles formation. The scanning electron microscopy images clearly showed regular flat shape with semiporous surface. All metal nanoparticles were well distributed inside the backbone of the cellulose without aggregation. The average particle diameter was 29–39 nm for zinc nanoparticles, 29–33 nm for cadmium nanoparticles, 25–33 nm for cobalt nanoparticles, 23–27 nm for copper nanoparticles, and 22–26 nm for iron nanoparticles. Electrospun carboxymethyl cellulose and CMC–MNPs nanofiber mats were synthesized by electrospinning technique and characterized using scanning electron microscopy, energy dispersive X-ray, and transmission electron microscopy. Scanning electron microscopy images of electrospun carboxymethyl cellulose and CMC–MNPs nanofibers reveal smooth and uniformly distributed nanofibers without bead formation with average fiber diameters in the range of 300–450 nm. Moreover, the diameters of electrospun carboxymethyl cellulose nanofiber mat were not affected by the presence of metal nanoparticles. Metal nanoparticles’ content inside the electrospun CMC–MNPs nanofibers was investigated by using atomic absorption spectroscopy. Electromagnetic interference shielding of electrospun carboxymethyl cellulose and CMC–MNPs nanofiber mats was evaluated. Data showed that the EMI-SE was increased in presence of metal nanoparticles and depending on both the metal nanoparticle contents and the electrical conductivity of metal nanoparticles.


2014 ◽  
Vol 1035 ◽  
pp. 231-234 ◽  
Author(s):  
Xun Yang ◽  
Ye Hong Han ◽  
Li Hui Wang

The new sponge material was prepared by the copolymerization of polystyrene and methacrylic acid. The polystyrene seed was prepared by two-step seed swelling polymerization. Scanning electron microscopy images showed that the sponge material were clumps with porous morphologies. The adsorption behaviour of the sponge material was analysed by detecting pefloxacin and enfloxacin in milk samples. Under the optimized conditions, good linearity was obtained in the range 0.05-10.0 μg g−1, with a correlation coefficient (r2) of ≥ 0.9991. The recoveries at three spiking levels ranged from 85.6 to 106.9% with relative standard deviations (RSDs) of ≤6.6%. The sponge material could be applied to the rapid screening of Pefloxacin and enfloxacin in complicated milk-product matrices.


Author(s):  
Mohammad K. Hossain ◽  
Samira N. Shaily ◽  
Hadiya J. Harrigan ◽  
Terrie Mickens

A completely biodegradable composite was fabricated from an herbal polymer, soy protein concentrate (SPC) resin. Soy protein was modified by adding 30 wt% of glycerol and 5 wt% of poly vinyl alcohol (PVA) to enhance its mechanical as well as thermal property. 3%, 5%, 10%, and 20% nanoclay (NC) were infused into the system. To evaluate its mechanical properties, crystallinity, thermal properties, bonding interaction, and morphological evaluation, tensile, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) tests, and optical microscopy (OM) and scanning electron microscopy (SEM) evaluation were performed. Tensile tests showed that the addition of nanoclay improved the mechanical properties of the modified resin. Soy protein is hydrophilic due to the presence of amino acids that contain various polar groups such as amine, carboxyl, and hydroxyl. As a result, polar nanoclay particles that are exfoliated can be evenly dispersed in the SPC resin. From experimental results, it is clear that adding of nanoclay with SPC resin significantly increased the stiffness of the SPC resin. A combination of 5% clay, 30% glycerol, and 5% PVA with the modified SPC resulted in the maximum stress of 18 MPa and Young modulus of 958 MPa. The modified SPC showed a reduced failure strain as well. X-ray diffraction curves showed an improvement of crystallinity of the prepared resin with increasing amount of nanoclay. Interaction among soy, glycerol, PVA, and nanoclay was clearly demonstrated from the FTIR analysis. Optical microscopy (OM) and scanning electron microscopy (SEM) micrographs revealed rougher surface in the nanoclay infused SPC samples compared to that of the neat one. SEM evaluation revealed rougher fracture surface in the NC infused samples.


MRS Advances ◽  
2018 ◽  
Vol 3 (63) ◽  
pp. 3833-3837
Author(s):  
Israel Fredy Sánchez-Salinas ◽  
Javier Illescas ◽  
Claudia Rosario Muro-Urista ◽  
Guillermina Burillo ◽  
María del Carmen Díaz Nava

AbstractPolysulfone (Pfu) films were modified by grafting poly(vinyl alcohol) (PVA) by the oxidative pre-irradiation technique. To achieve this modification, some parameters were modified such as the radiation dose, the concentration of PVA, the temperature and the reaction time. It was found that the grafted films with 12% presented a greater grafting percentage (0.86%). The modified films were characterized by means of the contact angle, Fourier transform infrared spectroscopy (FTIR-ATR) and scanning electron microscopy (SEM) techniques.


2012 ◽  
Vol 463-464 ◽  
pp. 734-738 ◽  
Author(s):  
Tongsai Jamnongkan ◽  
Amnuay Wattanakornsiri ◽  
P. Pungboon Pansila ◽  
Claudio Migliaresi ◽  
Supranee Kaewpirom

Series of poly (vinyl alcohol)/chitosan (PVA/CS) electrospun nanofibers with different weight ratio of PVA and CS were fabricated by electrospinning method. The surface morphology, diameter, and structure of electrospun nanofibers were investigated by scanning electron microscopy (SEM). As a result of PVA and CS composition measurements, the electrospun nanofibers morphologies were mainly affected by weight ratio of the polymer solution. When increasing the chitosan content in the blend solution, the electrospun nanofibers could hardly form. This result indicates that the electrospun nanofiber formation is enhanced by chitosan content.


2021 ◽  
pp. 096739112110271
Author(s):  
Reyhaneh Fatahian ◽  
Mohammad Mirjalili ◽  
Ramin Khajavi ◽  
Mohammad Karim Rahimi ◽  
Navid Nasirizadeh

Differences in the properties of poly(vinyl alcohol) (PVA) and poly (lactic acid) (PLA) polymers have attracted much attention today. In this research, the aim is to produce PVA/PLA nanofibers with hydrophilicity and good mechanical properties using a mutual solvent. In this regard, the ability to produce PVA/PLA nanofibers using a mutual solvent was evaluated. The effect of electrospinning parameters on the morphology of nanofibers, hydrophilicity of nanofibers produced by measuring water absorption and contact angle as well as mechanical properties of nanofibers were considered. The results obtained from scanning electron microscopy analyses of the structure of these fibers showed that PVA had the highest viscosity of 5.64 Pa.s and the highest diameter of 260 nm, which decreased the thickness of the nanofibers with increasing PLA. And pure PLA had the lowest mean diameter of 76 nm. In the consideration of the mechanical properties of the prepared nanofibers, it was found that the combination of PLA and PVA nanofibers will lead to overlap the properties of each other and the creation of desirable mechanical properties. Moreover, in the investigation of water absorption and contact angle, it was concluded that the PVA/PLA was fully absorbed in less than 200 seconds and the samples have a contact angle of less than 52°. Finally, it was found that the average diameter of the produced nanofibers was decreased by increasing the voltage and the needle tip to collector distance by considering the PVA/PLA samples with a ratio of 50:50.


Author(s):  
Ferdi C Bayram ◽  
Mehmet F Kapçı ◽  
Adile Yuruk ◽  
Ismail A Isoglu ◽  
Burak Bal

The effects of strain rate, size (height × width), and pre-existing crack length on the mechanical response of polycaprolactone electrospun membranes were investigated by tension tests conducted at room temperature. In particular, tensile tests were performed with three different strain rates for strain rate effect tests, seven different geometries for elucidating the size effect, and three different initial notch lengths for crack growth experiments. The electrospun membranes were produced by the electrospinning technique using a polycaprolactone solution prepared in 1, 1, 1, 3, 3, 3-hexafluoro-2-propanol as the solvent. Scanning electron microscopy was utilized to show the continuous fiber structure without bead formation. The average fiber diameter was calculated as 1.113 ± 0.270 μm by using scanning electron microscopy images of the membranes. The chemical structure of polycaprolactone was analyzed by Fourier transform infrared spectroscopy, and the toxicity and cell viability of the electrospun membranes were shown by CellTiter 96® Aqueous One Solution Cell Proliferation Assay (MTS test). It was observed that the ultimate tensile strength and Young’s modulus decreased, and the elongation at failure value increased as the strain rate decreased from 10−1 to 10−3 s−1. Besides, positive strain rate sensitivity was observed on the mechanical response of electrospun polycaprolactone membranes. Moreover, the dependency of mechanical response on the size geometry has been well studied, and the optimum height and width combinations were specified. Also, crack growth was studied in terms of both macroscopic and microstructural deformation mechanisms and it is observed that individual fiber deformations and interactions are highly effective on the mechanical behavior and also propagation of the crack. Consequently, in this study, the size and strain rate effects and crack growth on the mechanical response of electrospun polycaprolactone membranes have been investigated extensively, and the results presented herein constitute an essential guideline for the usage of polycaprolactone electrospun membranes at different loading scenarios.


Sign in / Sign up

Export Citation Format

Share Document