scholarly journals High Efficiency of Natural Safiot Clay to Remove Industrial Dyes from Aqueous Media: Kinetic, Isotherm Adsorption and Thermodynamic Studies

2021 ◽  
Vol 11 (5) ◽  
pp. 12717-12731

This study's objective was to demonstrate the potential of Natural Safiot Clay (NSC) for removing cationic dyes MB and Safranin from synthetic wastewater. The operation parameters investigated included initial concentrations, adsorbent dose, initial pH, and temperature. Experimental tests were conducted in a batch process. The experimental isotherms data were analyzed using Langmuir, Freundlich, and Dubinin–Radushkevich isotherm models. The Langmuir model obtained the best fit with a maximum monolayer adsorption capacity of 68.49 mg/g for MB and 45.45 mg/g for safranin. Pseudo-first-order, pseudo-second-order kinetic equations, and intraparticle diffusion models were used to examine the experimental data at different initial concentrations. It was found that the pseudo-second-order kinetic model described the data of dyes adsorption on NSC adsorbent very well. Thermodynamic adsorption processes were found to be spontaneous, exothermic, and physical reactions. The natural safiot clay was characterized using the following technique: DRX, XRF, SEM, EDX, and FT-IR.

Author(s):  
Armin Geroeeyan ◽  
Ali Niazi ◽  
Elaheh Konoz

Abstract In the present research, the removal of Basic Orange 2 (BO2) dye using alkaline-modified clay nanoparticles was studied. To characterize the adsorbent, XRD, FTIR, FESEM, EDX, BET and BJH analyses were performed. The effect of the variables influencing the dye adsorption process such as adsorbent dose, contact time, pH, stirring rate, temperature, and initial dye concentration was investigated. Furthermore, the high efficiency of Ni2+ removal indicated that it is possible to remove both dye and metal cation under the same optimum conditions. The experimental data were analyzed by Langmuir and Freundlich isotherm models. Fitting the experimental data to Langmuir isotherm indicated that the monolayer adsorption of dye occurred at homogeneous sites. Experimental data were also analyzed with pseudo-first-order, pseudo-second-order, and intra-particle diffusion kinetic equations for kinetic modeling of the dye removal process. The adsorption results indicated that the process follows a pseudo-second-order kinetic model. The thermodynamic parameters of the dye adsorption process such as enthalpy, entropy, and Gibbs free energy changes were calculated and revealed that the adsorption process was spontaneous and endothermic in nature. The results presented the high potential of the modified nanoclay as a cost-effective adsorbent for the removal of BO2 dye and Ni2+ from aqueous medium.


2019 ◽  
Vol 20 (2) ◽  
pp. 23-32
Author(s):  
Marah Waleed Khalid ◽  
Sami D. Salman

Due to the broad range uses of chromium for industrial purposes, besides its carcinogenic effect, an efficient, cost effective removal method should be obtained. In this study, cow bones as a cheap raw material were utilized to produce active carbon (CBAC) by physiochemical activation, which was characterized using: SEM to investigate surface morphology and BET to estimate the specific surface area. The best surface area of CBAC was 595.9 m2/gm which was prepared at 600 ᵒC activation temperature and impregnation ratio of 1:1.5. CBAC was used in aqueous chromium ions adsorption. The investigated factors and their ranges are: initial concentration (10-50 mg/L), adsorption time (30-300 min), temperature (20-50 ᵒC) and solution pH (2-11). Isotherm of adsorption and its kinetics were studied. The adsorption process was modeled statistically and was represented by an empirical model. Equilibrium data were fitted to the Langmuir and Freundlich isotherm models and the data best represented by Freundlich isotherm. Pseudo- first order and pseudo- second order kinetic equations were utilized to study adsorption kinetics, where chromium adsorption on CBAC fitted pseudo- second order fitted the data more adequately. The best removal efficiency was found to be 94.32%.


Author(s):  
Yusef Omidi Khaniabadi ◽  
Hassan Basiri ◽  
Heshmatollah Nourmoradi ◽  
Mohammad Javad Mohammadi ◽  
Ahmad Reza Yari ◽  
...  

AbstractIn this study, the sorption of Congo red (CR), as a toxic dye, from aqueous media was investigated using montmorillonite (MMT) as a low-cost adsorbent. The influence of several factors such as contact time, pH, adsorbent dosage, dye content, and ionic strength was investigated on the dye removal. MMT was characterized by Fourier transformed infrared (FTIR) spectroscopy and X-ray diffractometer (XRD). Different kinetic and isotherm models including pseudo-first and pseudo-second order kinetic and Langmuir and Freundlich were applied to analyze experimental data, respectively. The results showed that the data were well fitted by pseudo-second-order kinetic and Freundlich isotherm models. The optimum conditions for the sorption of CR were achieved over 40 min and at pH=2. According to the results of the present study, MMT can be used as a low-cost, eco-friendly and effective option for the adsorption of CR from aqueous solutions.


In the present study application of MCM-41 for removal of phenol was investigated. MCM-41nano-adsorbent was synthesized and characterized by FTIR, XRD and SEM analysis. Adsorption isotherm experiment was performed in batch shake flask. The experimental data were analyzed using various isotherm models. Result revealsthat,Langmuir isotherm model fitted the data very well for the removal of phenol by the MCM-41 adsorbents. The calculated dimensionless separation factor, RL indicates that the adsorption of phenol onto MCM-41 was favorable. Pseudo-first order, pseudo-second order kinetic equations and intraparticle diffusion model were applied to analyze the adsorption kinetics of the MCM-41 at different initial phenol concentrations. It was found that the adsorption of phenol on to the MCM-41 follows the pseudo-second order kinetic. At an initial phenol concentration of 130 mgl-1, more than 99% phenol, 93% COD along with 96% of toxicity removal were achieved. Thus, the synthesized mesoporous MCM-41 proved to be a potential candidate for removal of phenol from industrial wastewater.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Joshua N. Edokpayi ◽  
Samson O. Alayande ◽  
Ahmed Adetoro ◽  
John O. Odiyo

In this study, the potential for pulverized raw macadamia nut shell (MNS) for the sequestration of methylene blue from aqueous media was assessed. The sorbent was characterized using scanning electron microscopy for surface morphology, functional group analysis was performed with a Fourier-transform infrared spectrometer (FT-IR), and Brunauer–Emmett–Teller (BET) isotherm was used for surface area elucidation. The effects of contact time, sorbent dosage, particle size, pH, and change in a solution matrix were studied. Equilibrium data were fitted using Temkin, Langmuir, and Freundlich adsorption isotherm models. The sorption kinetics was studied using the Lagergren pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. The feasibility of the study was established from the thermodynamic studies. A surface area of 2.763 m2/g was obtained. The equilibrium and kinetics of sorption was best described by the Langmuir and the pseudo-second-order models, respectively. The sorption process was spontaneous (−ΔG0=28.72−31.77 kJ/mol) and endothermic in nature (ΔH0=17.45 kJ/mol). The positive value of ΔS0 (0.15 kJ/molK) implies increased randomness of the sorbate molecules at the surface of the sorbent. This study presents sustainable management of wastewater using MNS as a potential low-cost sorbent for dye decontamination from aqueous solution.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5156
Author(s):  
Dororthea Politi ◽  
Dimitrios Sidiras

This study investigated the potential use of spruce sawdust that was pretreated with diethylene glycol and sulfuric acid for the removal of hexavalent chromium from wastewater. The sawdust pretreatment process was conducted at different temperatures and times. The adsorbent was characterized by quantitative saccharification, scanning electron microscopy, and Brunauer–Emmet–Teller surface area analysis. Adsorption capacity was studied for both batch and column processes. The experimental adsorption isotherms were simulated using seven isotherm models, including Freundlich and Langmuir models. By using the Langmuir isotherm model, the maximal Cr(VI) adsorption capacity of organosolv-pretreated spruce sawdust (qm) was 318.3 mg g−1. Furthermore, the kinetic data were fitted to Lagergren, pseudo-second-order, and intraparticle diffusion models, revealing that the adsorption of Cr(VI) onto spruce sawdust pretreated with diethylene glycol and sulfuric acid is best represented by the pseudo-second-order kinetic model. Three kinetic models, namely, the Bohart–Adams model, Thomas model, and modified dose–response (MDR) model, were used to fit the experimental data obtained from the column experiments and to resolve the characteristic parameters. The Thomas adsorption column capacity of the sawdust was increased from 2.44 to 31.1 mg g−1 upon pretreatment, thus, demonstrating that organosolv treatment enhances the adsorption capability of the material.


2017 ◽  
Vol 12 (2) ◽  
pp. 305-313 ◽  
Author(s):  
N. Rajamohan ◽  
M. Rajasimman

This experimental research was an investigation into removal of mercury by using a strong acid cation resin, 001 × 7. Parametric experiments were conducted to determine the optimum pH, resin dosage, agitation speed and the effect of change in concentration in the range of 50–200 mg/L. High resin dosages favoured better removal efficiency but resulted in lower uptakes. Equilibrium experiments were performed and fitted to Langmuir and Freundlich isotherm models. Langmuir model suited well to this study confirming the homogeneity of the resin surface. The Langmuir constants were estimated as qmax = 110.619 mg/g and KL = 0.070 L/g at 308 K. Kinetic experiments were modeled using Pseudo second order model and higher values of R2 (>0.97) were obtained. The Pseudo second order kinetic constants, namely, equilibrium uptake (qe) and rate constant (k2), were evaluated as 59.17 mg/g and 40.2 × 10−4 g mg−1 min−1 at an initial mercury concentration of 100 mg/L and temperature of 308 K.


2013 ◽  
Vol 11 (1) ◽  
pp. 501-509
Author(s):  
Xueyong Zhou ◽  
Huifen Liu ◽  
Xianzhi Lu ◽  
Lili Shi ◽  
Jianchao Hao

Abstract Genetically modified crops, which produce insecticidal toxins from Bacillus thuringiensis (Bt), release the toxins into soils. Although the phenomena of persistence and degradation of Bt toxins have been documented, the effect of heavy metals on the fate of these toxins in soil has not yet been elucidated. The effect of Pb(II) on the adsorption behaviors of Bt toxin in brown and red soil was investigated. With the increase of Pb(II) concentration, the adsorption of Bt toxin in brown and red soil increased. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models gave better fitting to the experimental equilibrium data. Values of KL, KF and n increased but RL decreased with the increase of Pb(II) concentration, showing that the Pb(II) promoted the adsorption of Bt toxin in soils. The mean free energy of adsorption (E) ranged from 10.43 to 16.44 kJ mol−1 may correspond to a chemical ion-exchange mechanism. Three kinds of kinetic models, the pseudo-first-order, pseudo-second-order and intraparticle diffusion model, were used to test the experimental data. The results showed that the adsorption of Bt toxin by brown and red soil followed the pseudo-second-order kinetic model. The addition of Pb(II) during the adsorption led to a decrease of the desorption of Bt toxin from soils, indicating that the residual risk of Bt toxin may become larger if soil is polluted by lead.


2016 ◽  
Vol 74 (7) ◽  
pp. 1644-1657 ◽  
Author(s):  
Mona El-Sayed ◽  
Gh. Eshaq ◽  
A. E. ElMetwally

In our study, Mg–Al–Zn mingled oxides were prepared by the co-precipitation method. The structure, composition, morphology and thermal stability of the synthesized Mg–Al–Zn mingled oxides were analyzed by powder X-ray diffraction, Fourier transform infrared spectrometry, N2 physisorption, scanning electron microscopy, differential scanning calorimetry and thermogravimetry. Batch experiments were performed to study the adsorption behavior of cobalt(II) and nickel(II) as a function of pH, contact time, initial metal ion concentration, and adsorbent dose. The maximum adsorption capacity of Mg–Al–Zn mingled oxides for cobalt and nickel metal ions was 116.7 mg g−1, and 70.4 mg g−1, respectively. The experimental data were analyzed using pseudo-first- and pseudo-second-order kinetic models in linear and nonlinear regression analysis. The kinetic studies showed that the adsorption process could be described by the pseudo-second-order kinetic model. Experimental equilibrium data were well represented by Langmuir and Freundlich isotherm models. Also, the maximum monolayer capacity, qmax, obtained was 113.8 mg g−1, and 79.4 mg g−1 for Co(II), and Ni(II), respectively. Our results showed that Mg–Al–Zn mingled oxides can be used as an efficient adsorbent material for removal of heavy metals from industrial wastewater samples.


2012 ◽  
Vol 65 (10) ◽  
pp. 1729-1737 ◽  
Author(s):  
Messaouda Safa ◽  
Mohammed Larouci ◽  
Boumediene Meddah ◽  
Pierre Valemens

The adsorption of Cu2+, Zn2+, Cd2+ and Pb2+ ions from aqueous solution by Algerian raw diatomite was studied. The influences of different sorption parameters such as contact pH solution, contact time and initial metal ions concentration were studied to optimize the reaction conditions. The metals ions adsorption was strictly pH dependent. The maximum adsorption capacities towards Cu2+, Zn2+, Cd2+ and Pb2+ were 0.319, 0.311, 0.18 and 0.096 mmol g−1, respectively. The kinetic data were modelled using the pseudo-first-order and pseudo-second-order kinetic equations. Among the kinetic models studied, the pseudo-second-order equation was the best applicable model to describe the sorption process. Equilibrium isotherm data were analysed using the Langmuir and the Freundlich isotherms; the results showed that the adsorption equilibrium was well described by both model isotherms. The negative value of free energy change ΔG indicates feasible and spontaneous adsorption of four metal ions on raw diatomite. According to these results, the high exchange capacities of different metal ions at high and low concentration levels, and given the low cost of the investigated adsorbent in this work, Algerian diatomite was considered to be an excellent adsorbent.


Sign in / Sign up

Export Citation Format

Share Document