scholarly journals Assessment of Tumor Take Inhibitory Activity of Ethanolic Leaf Extract of Piper betle L. in Mice

2021 ◽  
Vol 11 (5) ◽  
pp. 13328-13332

The present study was undertaken to explore the tumor take inhibitory effects of ethanolic extract of Piper betle in rodents. Tumor takes inhibitory activity was investigated in hybrid mice (of C57BL strain + Swiss albino strain). Preventive group animals were injected daily with the extract at a dose of 50mg/kg body weight, i.p. for 10 consecutive days. The animals were observed to grow tumors after injection of B16F10 melanoma cells into mice's dorsal skin. Pretreatment with the extract and showed delays in tumor growth by increasing the volume doubling time, VDT (p<0.01), growth delay, GD (p< 0.01), and mean survival time, MST (p<0.001). Tumor regression studies showed a regression response for tumor growth in vivo of murine mouse melanoma tumor cell lines, demonstrated by increasing the VDT and GD.

2009 ◽  
Vol 3 (2) ◽  
Author(s):  
J. Jiang ◽  
J. Bischof

Uterine leiomyoma (fibroid or myoma) is the most common indication for hysterectomy in premenopausal women. Cryomyolysis is a uterus sparing procedure in which a myoma is frozen by a cryoprobe, thereby causing tissue necrosis upon thawing and eventual reduction in myoma size. Unfortunately, although the iceball is readily visualized (by ultrasound-US or magnetic resonance-MR), the tissue at the periphery of the iceball is not completely destroyed. One potential solution to this problem is the use of cryosurgical adjuvants that increase cryosurgical image guidance and efficacy. Previous work in our lab has shown that TNF-α (native or as the nanodrug, CYT-6091, Cytimmune Sciences, Inc.) can act synergistically with cryosurgery to destroy all prostate cancer within an iceball. Building on this work, the current study was designed to test TNF-α as an adjuvant in an in vivo model of uterine fibroid (ELT-3) in a nude mouse. The aims of this study are to characterize in vivo: 1) the destruction of the uterine fibroid over time after cryosurgery; 2) the effect of TNF-α pre-treatment on enhancement of cryosurgery; 3) the effect of TNF-α dose, pre-treatment time and mode of delivery on the above and to note any toxicities. ELT–3 rat uterine fibroid cells were grown in the hind limb of female nude mice. TNF-α at various dose (2μg and 5μg) was administered at 1, 2 and 4 hours before cryotreatment in native or CYT-6091. Native TNF-α was injected either intra-tumorally or peri-tumorally. Injecting TNF-α solution into the center of the tumor comprised the intra-tumoral approach. For peri-tumoral injection, TNF-α solution was injected at each one of eight evenly distributed points spanning the circumference of the tumor base. CYT-6091 was administered by i.v. injection only. Cryosurgery was performed with a modified 1 mm diameter cryoprobe tip (−120°C). Freezing was allowed to continue to the visible edge of the tumor. Injury was assessed by measuring tumor-growth delay. Baseline tumor size was measured on day 0; fold-changes in tumor size are reported relative to size at day 0. Toxicity was evaluated by survival rate. Groups were 4–6 animals in each group. The data suggests that pre-treatment with TNF-α before cryosurgery significantly enhances visually guided destruction of uterine leiomyoma, and that the dose, timing and mode of delivery are important variables in optimization of this combination treatment. First, it was observed that at least four hours pretreatment with TNF-α is required to obtain the synergistic effect of TNF-α and cryoinjury. Second, peri-tumoral injection of native TNF-α, was the most effective delivery method to enhance cryoinjury at low dose (2μg), however it was also the most toxic method at high dose (5μg). On the other hand, CYT-6091, although less effective than peri-tumoral injection at 2μg, was the safest delivery mode (0% lethality at 2μg; 33% at 5μg). Finally, CYT-6091 delivery at 5μg with cryosurgery resulted in a dramatic tumor growth delay compared with cryosurgery alone. Therefore, i.v. injection of CYT-6091 followed by cryosurgery allowed the highest dose of TNF-α, the least toxicity and the best overall myoma reduction. Funding: R01 CA075284, American Medical Systems, Inc. TNF-α and CYT-6091: Cytimmune Sciences, Inc.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3931-3931 ◽  
Author(s):  
Paul A. Algate ◽  
Jennifer Wiens ◽  
Christy Nilsson ◽  
Mien Sho ◽  
Debra T. Chao ◽  
...  

Abstract Abstract 3931 Background: CD37 is a 50–55 kDa heavily glycosylated member of the tetraspanin superfamily of molecules. This cell surface protein is expressed on normal and transformed B-cells, and has been implicated in diverse processes including cellular activation and proliferation, cell motility, and cell-cell adhesion. TRU-016 is a novel humanized anti-CD37 SMIP™ protein. Pre-clinical studies have demonstrated that anti-CD37 SMIP™ protein mediates caspase-independent direct killing of normal and malignant B-cells, a mechanism of action that appears to be different than CD20 therapies. In addition, TRU-016 results in indirect killing through NK cell mediated SMIP-protein directed cellular cytotoxicity (SDCC). The therapeutic potential of TRU-016 against several subsets of B-cell malignancies is currently being investigated in the clinic. Methods: The ability of TRU-016 to interact and increase cell killing with established therapeutics rituximab (anti-CD20 antibody), bendamustine (bi-functional alkylating agent/nucleoside analog), LY294002 (PI3K inhibitor) and temsirolimus (mTOR inhibitor) was investigated in vitro using the Rec-1 (mantle cell lymphoma) and SU-DHL-6 (diffuse large B cell lymphoma) cell lines. Individual drugs were tested in combination with TRU-016 as well as in a multiple drug cocktail. Combination index analyses were performed for drug combinations over the 20–90% effect levels. To determine whether in vitro synergy could be recapitulated in vivo, DoHH-2 (follicular lymphoma) xenografts were treated with TRU-016, bendamustine, and the combination of TRU-016 and bendamustine with or without rituximab. Furthermore, the effect of the dosing schedule with the combination of TRU-016 and rituximab was explored by comparing the treatment over a short time period to an extended (maintenance) dosing regimen. CD37 expression on the tumor xenografts was evaluated post different treatment by immunohistochemistry. Results: Combination index analyses determined that the killing effects of TRU-016 was synergistic with rituximab, bendamustine and temsirolimus in NHL models. Furthermore, TRU-016 provided additional efficacy when added to the combination of rituximab and bendamustine. In vivo results demonstrated that the in vitro synergy results were applicable to a more complex in vivo disease model. The combination of TRU-016 with bendamustine or rituximab resulted in increased tumor growth delay compared to that attained with the individual drugs. The addition of TRU-016 to the combination of bendamustine and rituximab resulted in increased tumor growth delay compared to the two drugs alone. The observed efficacy of the combination of TRU-016 and rituximab could be extended with repeated (maintenance) dosing with tumor free survival being observed beyond the 35 days of dosing. The combination of TRU-016 with temsirolimus also resulted in a reduction of tumor growth compared to either molecule alone. CD37 target expression was detected in the xenograft tumors post-treatment with all drugs tested. Conclusions: TRU-016 in combination with rituximab, bendamustine or temsirolimus increased cell killing of NHL cells in vitro over that observed for each agent alone. Furthermore, the triple combination of TRU-016 with rituximab, bendamustine or temsirolimus displayed greater anti-tumor activity in vivo than each of the agents alone against a follicular lymphoma tumor model. The addition of TRU-016 to a combination of rituximab and bendamustine resulted in increased killing in vitro and in vivo. The combinatorial activity of TRU-016 and rituximab in vivo was increased when the drugs were administered over a longer period. These results provide preclinical rationale for the potential different combinations of TRU-016 with several established therapeutics for the treatment of NHL and related B-cell malignancies. Disclosures: Algate: Trubion Pharmaceuticals: Employment. Wiens:Trubion Pharmaceuticals: Employment. Nilsson:Trubion Pharmaceuticals: Employment. Sho:Facet/Abbott: Employment. Chao:Facet/Abbott: Employment. Starling:Facet/Abbott: Employment. Gordon:Trubion Pharmaceuticals: Employment.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e22143-e22143
Author(s):  
Elena V. Kurenova ◽  
Sartaj Singh Sanghera ◽  
Jianqun Liao ◽  
Michael Yemma ◽  
William G. Cance

e22143 Background: While the emerging data strongly suggest that FAK is an excellent target for developmental therapeutics of cancer, kinase inhibitors of FAK have shown crossreactivity with other protein kinases and toxicity in preclinical and clinical studies. It is known that FAK acts pleiotropically, as a kinase and as a scaffolding protein, and our goal is to explore targeting the scaffolding function of FAK to inhibit protein-protein interactions important for tumor progression. Previously, we have shown that FAK physically interacts with VEGFR3 and we identified small molecule inhibitor CFAK-C4 that targets this site of interaction. Both of these kinases are overexpressed in gastric cancers and were found to be independent poor prognostic factors. The prognosis of patients with gastric cancer remains unfavorable and molecular based treatments are necessary for a potential breakthrough in the therapy of this disease. We hypothesize that FAK-VEGFR3 interaction provides essential survival signals for gastric tumor growth and that simultaneous inhibition of these signals will inhibit tumor progression. Methods: Effects of CFAK-C4 on gastric cancer cell lines AGS and NCI-N87 were examined by MTT assay (viability), colony formation assay and Western blotting (phosphorylation, apoptosis). Subcutaneous mouse model was used to demonstrate effect of CFAK-C4 in vivo. Results: CFAK-C4 specifically blocked phosphorylation of VEGFR3 and FAK, directly inhibited cell viability (p<0.05), increased cell detachment and inhibited colony formation in a dose-dependent manner (range 1-100µM). CFAK-C4 (50mg/kg, IP) effectively caused tumor regression in vivo, when administered alone and its effects were synergistic (p<0.05) with chemotherapy. In vivo effects of C4 were confirmed by a decrease in tumor FAK and VEGFR3 phosphorylation, and disruption of their complexes. Conclusions: In this study we have shown that CFAK-C4 inhibits FAK-VEGFR3 signaling in gastric cancer cells and affects tumor growth. This result demonstrates that targeting the scaffolding function of FAK is a unique approach of highly-specific molecular-targeted therapy and can be used to develop oral-based cancer therapeutics.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3266 ◽  
Author(s):  
Ha-Na Oh ◽  
Dae-Hun Park ◽  
Ji-Yeon Park ◽  
Seung-Yub Song ◽  
Sung-Ho Lee ◽  
...  

In the present study, various extracts of C. tricuspidata fruit were prepared with varying ethanol contents and evaluated for their biomarker and biological properties. The 80% ethanolic extract showed the best tyrosinase inhibitory activity, while the 100% ethanolic extract showed the best total phenolics and flavonoids contents. The HPLC method was applied to analyze the chlorogenic acid in C. tricuspidata fruit extracts. The results suggest that the observed antioxidant and tyrosinase inhibitory activity of C. tricuspidata fruit extract could partially be attributed to the presence of marker compounds in the extract. In this study, we present an analytical method for standardization and optimization of C. tricuspidata fruit preparations. Further investigations are warranted to confirm the in vivo pharmacological activity of C. tricuspidata fruit extract and its active constituents and assess the safe use of the plant for the potential development of the extract as a skin depigmentation agent.


Blood ◽  
2003 ◽  
Vol 102 (10) ◽  
pp. 3837-3844 ◽  
Author(s):  
Farida Djouad ◽  
Pascale Plence ◽  
Claire Bony ◽  
Philippe Tropel ◽  
Florence Apparailly ◽  
...  

Abstract Mesenchymal stem cells (MSCs) are largely studied for their potential clinical use. Recently, they have gained further interest after demonstration of an immunosuppressive role. In this study, we investigated whether in vivo injection of MSCs could display side effects related to systemic immunosuppression favoring tumor growth. We first showed in vitro that the murine C3H10T1/2 (C3) MSC line and primary MSCs exhibit immunosuppressive properties in mixed lymphocyte reaction. We demonstrated that this effect is mediated by soluble factors, secreted only on “activation” of MSCs in the presence of splenocytes. Moreover, the immunosuppression is mediated by CD8+ regulatory cells responsible for the inhibition of allogeneic lymphocyte proliferation. We then demonstrated that the C3 MSCs expressing the human bone morphogenetic protein 2 (hBMP-2) differentiation factor were not rejected when implanted in various allogeneic immunocompetent mice and were still able to differentiate into bone. Importantly, using a murine melanoma tumor model, we showed that the subcutaneous injection of B16 melanoma cells led to tumor growth in allogeneic recipients only when MSCs were coinjected. Although the potential side effects of immunosuppression induced by MSCs have to be considered in further clinical studies, the usefulness of MSCs for various therapeutic applications still remains of great interest. (Blood. 2003;102:3837-3844)


2016 ◽  
Vol 50 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Simona Kranjc ◽  
Matej Kranjc ◽  
Janez Scancar ◽  
Jure Jelenc ◽  
Gregor Sersa ◽  
...  

Introduction Pulsed electromagnetic field (PEMF) induces pulsed electric field, which presumably increases membrane permeabilization of the exposed cells, similar to the conventional electroporation. Thus, contactless PEMF could represent a promising approach for drug delivery. Materials and methods Noninvasive electroporation was performed by magnetic field pulse generator connected to an applicator consisting of round coil. Subcutaneous mouse B16F10 melanoma tumors were treated with intravenously injection of cisplatin (CDDP) (4 mg/kg), PEMF (480 bipolar pulses, at frequency of 80 Hz, pulse duration of 340 μs) or with the combination of both therapies (electrochemotherapy − PEMF + CDDP). Antitumor effectiveness of treatments was evaluated by tumor growth delay assay. In addition, the platinum (Pt) uptake in tumors and serum, as well as Pt bound to the DNA in the cells and Pt in the extracellular fraction were measured by inductively coupled plasma mass spectrometry. Results The antitumor effectiveness of electrochemotherapy with CDDP mediated by PEMF was comparable to the conventional electrochemotherapy with CDDP, with the induction of 2.3 days and 3.0 days tumor growth delay, respectively. The exposure of tumors to PEMF only, had no effect on tumor growth, as well as the injection of CDDP only. The antitumor effect in combined treatment was related to increased drug uptake into the electroporated tumor cells, demonstrated by increased amount of Pt bound to the DNA. Approximately 2-fold increase in cellular uptake of Pt was measured. Conclusions The obtained results in mouse melanoma model in vivo demonstrate the possible use of PEMF induced electroporation for biomedical applications, such as electrochemotherapy. The main advantages of electroporation mediated by PEMF are contactless and painless application, as well as effective electroporation compared to conventional electroporation.


Sign in / Sign up

Export Citation Format

Share Document