scholarly journals Inhibition Effect of 4-(2-Chlorophenyl)Hydrazineylidene-1-Phenyl-2-Pyrazolin-5-One Derivatives on Corrosion of 304 Stainless Steel in HCl Solution

2021 ◽  
Vol 11 (6) ◽  
pp. 14673-14687

4-(2-chlorophenyl)hydrazineylidene-1-phenyl-2-pyrazolin-5-one derivatives (2-CPH) were examined as safe corrosion hindrance for 304 stainless steel (SS 304) in 1.0 M HCl utilizing weight loss (WL) and electrochemical tests such as potentiodynamic polarization (PP), electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM). The outcome data displayed that the protection efficiency (IE%) rises with improving the dose of 2-CPH compounds and lower with raising the temperature. The adsorption of these inhibitors on the surface of SS 304 follows Langmuir isotherm. The 2-CPH are the best inhibitors for the dissolution of SS 304 in 1M HCl and they are mixed kind inhibitors. Quantum calculations (QM) display the impact of the chemical structure of the 2-CPH on its %IE. Additionally, 304 stainless surface topography in one molar HCl solution without and with 2-CPH compounds appending utilizing atomic force microscopy (AFM) approves the protection of 304 stainless via adsorbed 2-CPH compounds by a formed protective layer.

2020 ◽  
Vol 32 (8) ◽  
pp. 2043-2050
Author(s):  
Phattarasuda Manantapong ◽  
Nattanon Chaipunya ◽  
Suttipong Wannapaiboon ◽  
Prae Chirawatkul ◽  
Worawat Wattanathana ◽  
...  

The inhibiting action of Thai-bael fruit extract at room temperature on hot-rolled steel in 1M HCl solution was studied. The chemical functional groups of the green inhibitors were characterized by Fourier-transformed infrared spectroscopy. The electrochemical activities of steel surface were investigated through linear polarization measurements, electrochemical impedance spectroscopy, surface assessment techniques based on optical microscopy and X-ray absorption spectroscopy. Electrochemical testing samples have been prepared in the form of square plates with the size 1 × 1 cm2. The organic corrosion inhibitor extract from Thai-bael fruit has shown the smallest corrosion current density (Icorr) of 114.8 μA cm-2 and corrosion potential (Ecorr) of -424.6 mV, compared with standard Ag/AgCl electrode potential. In comparison, similar tests in the bare HCl solutions yielded Icorr = 882.4 mA cm-2 and Ecorr = -445.8 mV. The mixed-type corrosion inhibiting behaviour was evidenced in the results of the polarization measurements. Electrochemical impedance spectroscopy reveals that the resistance to charge transfer due to the presence of the extracts has been increased by about four times that of the same test on the bare HCl solution, indicating the formation of a protective layer. The adsorption of the organic molecules near the steel-electrolyte interface is evident in the decreasing double-layer capacitance with the enhancing concentration levels of the extract. This latter finding supports the displacement of the water molecules by means of the adsorption of the inhibitors on the steel surface. The optical images of steel surface before and after being immersed in HCl solution also showed pieces of evidence of corrosion retardation. XANES study as well as the linear combination fitting revealed that the samples immersed in HCl solutions with Thai-bael fruit extract possess less Fe3+ compositions. All tendencies across the four examinations indicate that Thai-bael fruit extract could potentially inhibit the corrosion reaction of steel electrodes in the acidic solution.


2021 ◽  
Author(s):  
Petar Stanić ◽  
◽  
Nataša Vukićević ◽  
Vesna Cvetković ◽  
Miroslav Pavlović ◽  
...  

Four 2-thiohydantoin derivatives were synthesized and their corrosion inhibition properties on mild steel (MS) in 0.5M HCl solution was evaluated using usual gravimetric and electrochemical methods (weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS). Morphology of the metal surface was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The study has shown that these compounds provide good protection for mild steel against corrosion in the acidic medium.


2021 ◽  
Vol 1020 ◽  
pp. 49-54
Author(s):  
A. Mostafa

The present study introduces a numerical procedure to estimate the impact resistance of stainless steel 304 (SS 304) commonly used in producing security screens through calculation of the effective ballistic limit velocity (V50). Non-linear finite element (FE) analysis using ABAQUS FE software was performed to simulate the material response with wide variety of thicknesses under various impact scenarios. Three different techniques were employed to determine V50, including: simulation of SS 304 using material parameters obtained from coupons testings and impact residual velocity and energy based on FE analysis. The material plasticity and damage initiation and evolution under dynamic loading conditions were simulated using Johnson-Cook model, while Lambert-Jonas model was utilized in predicting the residual impact velocity and energy using robust data regression system. Very good correlation within the investigated methodologies was observed along with obvious proportional between V50and coupons’ thickness. The significance of the outcome of this investigation is the developing of feasible and economical approach to evaluate the impact resistance of SS 304 which will significantly contribute to the development of superior security screens.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 598
Author(s):  
Wenwei Li ◽  
Jun-e Qu ◽  
Zhiyong Cao ◽  
Hairen Wang

The colored films were successfully prepared on the 304 stainless steel surfaces in coloring solutions with different NiSO4 contents. The purpose of this study was to investigate the effects of NiSO4 in the coloring solution on the coloring performance of 304 stainless steel and corrosion resistance of the obtained colored film in NaCl solution. The coloring rate was determined from coloring potential-time curve, and the protection properties of the color films in a 3.5% NaCl solution were characterized by potentiodynamic polarization scan, electrochemical impedance spectroscopy, and wear resistance test. The results showed that adding NiSO4 could accelerate the coloring process but brought about a negative impact on the surface’s corrosion resistance.


Author(s):  
Dewan Muhammad Nuruzzaman ◽  
Mohammad Asaduzzaman Chowdhury

This paper examines the relation between friction/wear and different types of steel materials under different normal loads and sliding velocities and to explore the possibility of adding controlled normal load and sliding velocity to a mechanical process. In order to do so, a pin on disc apparatus is designed and fabricated. Experiments are carried out when different types of disc materials such as stainless steel 304 (SS 304), stainless steel 316 (SS 316) and mild steel slide against stainless steel 304 (SS 304) pin. Variations of friction coefficient with the duration of rubbing at different normal loads and sliding velocities are investigated. Results show that friction coefficient varies with duration of rubbing, normal load and sliding velocity. In general, friction coefficient increases for a certain duration of rubbing and after that it remains constant for the rest of the experimental time. The obtained results reveal that friction coefficient decreases with the increase in normal load for all the tested materials. It is also found that friction coefficient increases with the increase in sliding velocity for all the materials investigated. Moreover, wear rate increases with the increase in normal load and sliding velocity. At identical operating condition, the magnitudes of friction coefficient and wear rate are different for different materials depending on sliding velocity and normal load.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4360
Author(s):  
Jialei Dai ◽  
Zixuan Yang ◽  
Qian Liu

Herein, we investigated the effects of Ce on the corrosion behavior of NdFeB magnets in 3.5% NaCl solutions using electrochemical tests, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) mapping, and scanning Kelvin probe force microscopy (SKPFM). We demonstrated that Ce markedly enhances the corrosion resistance of NdFeB magnets. Ce primarily replaces Nd in the Nd-rich phase instead of matrix phase, increasing the surface potential of the Nd-rich phase. An increase in the Ce content from 0 to 5.21 wt%, decreased the potential difference between the main phase and (Nd, Ce)-rich phase from 350.2 mV to 97.7 mV; therefore, the corrosion resistance of the magnetic materials increased. The corrosion resistance constituted the Nd-rich phase < the void < metal matrix. Moreover, based on the results of the study, we discussed the impact mechanism of additions of Ce on the corrosion resistance of the magnets.


1996 ◽  
Vol 451 ◽  
Author(s):  
T. J. Mckrell ◽  
J. M. Galligan

ABSTRACTAn electrochemical atomic force microscope (ECAFM) has been employed to observe, in situ, the topographical and electrical changes that occur on 304 stainless steel as a function of an electrical potential. The concurrent acquisition of a polarization curve and topographical data allows direct correlation of variations in the surface roughness with the electrochemical characteristics of the passivation process. Also, the large AFM scan size, employed in this study, allows for the delineation and determination of the interdependence of the surface kinetics at various regions of the surface. Simultaneous measurements of topographical and electrical changes at these regions have established a correspondence of the competing kinetics between the reactions of dissolution and passivation. This provides a way to relate chemical surface reactions to surface topography.


DYNA ◽  
2018 ◽  
Vol 85 (207) ◽  
pp. 221-226 ◽  
Author(s):  
Jhonattan De la Roche-Yepes ◽  
Juan Manuel Gonzalez Carmona ◽  
Elizabeth Restrepo-Parra ◽  
Hector Sanchez-Sthepa

Titanium-doped tungsten disulfide thin films (WS2-Ti) were deposited using a DC magnetron co-sputtering on AISI 304 stainless steel and silicon substrates. Different Ti cathode power densities between 0 and 1.25 W/cm2 were used for coating deposition. Energy-dispersive spectroscopy evidenced an increase in Ti percentage at the expense of W, as well as a sulfur deficiency. Raman spectroscopy was used to identify bands corresponding to W-S for undoped WS2. As the material was doped, changes in crystalline structure caused W-S main bands to separate. Scratch adhesion testing showed that Ti percentage increased along with the critical load (Lc). Furthermore, adhesive failure type changed from plastic to elastic. Finally, corrosion resistance analysis using electrochemical impedance spectroscopy (EIS) showed that, at high Ti concentrations, corrosion resistance was enhanced as Ti facilitates coating densification and generates a protective layer.


2013 ◽  
Vol 295-298 ◽  
pp. 497-502
Author(s):  
Cheng Tun Qu ◽  
Xue Yang ◽  
Bo Yang ◽  
Jing Tian ◽  
Xin Wang ◽  
...  

When Puguang gas field in non-normal production of hydrogen sulfide emissions from the combustion generates sulfur dioxide, in order to prevent its impact on the environment, the need for its emergency absorption. Used static weight-loss method study of A3 steel, 304 stainless steel, aluminum, H62 copper in 10% of (NH4)2SO3 solution, 10% of NH4HSO3 solution, and the mixed solution of 10% (NH4)2SO3 and NH4HSO3 respectively, optimized absorption system of material, and using the electrochemical impedance spectroscopy and anodic polarization curve analysis of several kinds of material in the absorption product solution of the corrosion condition. The results showed that 304 stainless steel corrosion resistance of the best, in 10% of (NH4)2SO3 solution, 10% of NH4HSO3 solution, and the mixed solution of 10% (NH4)2SO3 and NH4HSO3 respectively.


Sign in / Sign up

Export Citation Format

Share Document