scholarly journals Green synthesized Zinc Oxide Nanoparticles Elicited a Prominent Suppression of Oxidative and Inflammatory Distortions in Rats Exposed to Carbon Tetrachloride

2021 ◽  
Vol 12 (4) ◽  
pp. 5444-5457

This study centered on Zinc oxide nanoparticles capped with Pterocarpus mildbraedii leaf extracts (PmZnONPs) as a potent antioxidant and anti-inflammatory agent against carbon tetrachloride (CCl4) ‐ induced hepatorenal toxicity in rats. PmZnONPs were characterized by Fourier transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), X-ray diffraction pattern (XRD), and transmission electron microscopy (TEM) techniques. The FTIR results revealed the presence of various functional groups in PmZnONPs, while the BET showed a surface area of 1.55 mg-2. In vitro, PmZnONPS showed comparable 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH), and 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid (ABTS) radicals scavenging activities as Vitamin C. After that, PmZnONPs (1 and 3 mg/kg) were administered (p.o.) into six groups of rats, using CCl4 as the toxicant. The obtained results demonstrated that PmZnONPS significantly prevented CCl4‐induced elevations of alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma‐glutamyl transferase (GGT), alkaline phosphatase (ALP), bilirubin (BIL), creatinine, and urea. Moreover, PmZnONPs restored the levels of plasma uric acid, hepatorenal antioxidant enzymes, including superoxide dismutase, glutathione peroxidase, glutathione transferase, and glutathione that were significantly decreased by CCl4 treatment. Immunohistochemical studies showed that PmZnONPs significantly suppressed the high immunoreactivity of nuclear factor kappa B (NF‐κB), cyclooxygenase‐2 (COX-2), and interleukin‐6 (IL-6) arising from CCl4 intoxication. Thus our data hint that PmZnONPs suppressed CCl4‐induced toxicity in the liver and kidney of rats via its combined antioxidant and anti‐inflammatory properties.

Biomolecules ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 38 ◽  
Author(s):  
Banzeer Ahsan Abbasi ◽  
Javed Iqbal ◽  
Riaz Ahmad ◽  
Layiq Zia ◽  
Sobia Kanwal ◽  
...  

This study attempts to obtain and test the bioactivities of leaf extracts from a medicinal plant, Geranium wallichianum (GW), when conjugated with zinc oxide nanoparticles (ZnONPs). The integrity of leaf extract-conjugated ZnONPs (GW-ZnONPs) was confirmed using various techniques, including Ultraviolet–visible spectroscopy, X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, energy-dispersive spectra (EDS), scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The size of ZnONPs was approximately 18 nm, which was determined by TEM analysis. Additionally, the energy-dispersive spectra (EDS) revealed that NPs have zinc in its pure form. Bioactivities of GW-ZnONPs including antimicrobial potentials, cytotoxicity, antioxidative capacities, inhibition potentials against α-amylase, and protein kinases, as well as biocompatibility were intensively tested and confirmed. Altogether, the results revealed that GW-ZnONPs are non-toxic, biocompatible, and have considerable potential in biological applications.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1919
Author(s):  
Elsayim Rasha ◽  
AlOthman Monerah ◽  
Alkhulaifi Manal ◽  
Ali Rehab ◽  
Doud Mohammed ◽  
...  

Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.


Author(s):  
Bushra H. Shnawa ◽  
Samir M. Hamad ◽  
Azeez A. Barzinjy ◽  
Payman A. Kareem ◽  
Mukhtar H. Ahmed

AbstractCystic echinococcosis is a public health problem in developing countries that practice sheep breeding extensively. In the current study, the protoscolicidal activity of biosynthesized zinc oxide nanoparticles (ZnO NPs) derived from Mentha longifolia L. leaf extracts was investigated. The resultant ZnO NPs were characterized by means of various analytical techniques, such as ultraviolet–visible (UV–Vis) spectrometry, Fourier transform infrared (FT-IR) spectrophotometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) analysis. The results showed that the ZnO NP had the highest scolicidal activity at 400 ppm concentration after 150 min of exposure time, showing 100% mortality rate. The treated protoscolices exhibited loss of viability with several morphological alterations. Hence, an easy and effective green synthesis of ZnO NPs, with efficient scolicidal potential, is reported in this study.


2020 ◽  
Vol 26 (6) ◽  
pp. 200454-0
Author(s):  
Sabaoon Shamshad ◽  
Jamshaid Rashid ◽  
Ihsan-ul-haq ◽  
Naseem Iqbal ◽  
Saif Ullah Awan

Multidrug resistance of bacteria is an emerging human health hazard and warrants development of novel antibacterial agents with more effective mode of action. Here, zinc oxide and silver nanomaterials were prepared using Ficus palmata Forssk leaf extract with efficient antibacterial activity. SEM coupled with EDS confirmed the spherical symmetry with average particle diameter 50 to 65 nm while the XRD confirmed crystalline face centered cubic structure of silver and hexagonal crystallize phase of zinc oxide nanoparticles. Antibacterial activity was evaluated for 8 pathogenic bacterial strains including 3 drug resistant pathogenic strains. The nanoparticles showed enhanced growth inhibition for resistant strains in comparison with the broad-spectrum antibiotics i.e. roxithromycin and cefixime. Minimum inhibitory concentration in μg.mL<sup>-1</sup> of silver nanoparticles was found to be as low as 33.3 for resistant Streptococcus haemolyticus; 11.1 for Staphylococcus aureus and E Coli; and 3.7 μg.mL<sup>-1</sup> for resistant Pseudomonas aeruginosa. Similarly, the minimum inhibitory concentration of zinc oxide nanoparticles was found to be 100 μg.mL<sup>-1</sup> against resistant Streptococcus haemolyticus and Staphylococcus aureus; 11.1 μg.mL<sup>-1</sup> for resistant Pseudomonas aeruginosa; and 3.7 μg.mL<sup>-1</sup> against resistant E coli. Ficus palmata Forssk leaf extracts can be explored effectively for synthesizing active antibacterial nanomaterials as a non-toxic and environmentally benign synthesis route.


Micron ◽  
2021 ◽  
Vol 141 ◽  
pp. 102964
Author(s):  
Anthony Ekennia ◽  
Dickson Uduagwu ◽  
Olawale Olowu ◽  
Obianuju Nwanji ◽  
Obinna Oje ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Meron Girma Demissie ◽  
Fedlu Kedir Sabir ◽  
Gemechu Deressa Edossa ◽  
Bedasa Abdisa Gonfa

The synthesis of metal oxide nanoparticles with the use of medicinal plant extract is a promising alternative to the conventional chemical method. This work aimed to synthesize zinc oxide nanoparticles using a green approach from indigenous “Koseret” Lippia adoensis leaf extract which is an endemic medicinal plant and cultivated in home gardens of different regions of Ethiopia. The biosynthesized zinc oxide nanoparticles were characterized using thermogravimetric analysis, X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and Fourier transform infrared spectroscopy. Furthermore, this study also evaluated the antibacterial activity of the synthesized ZnO nanoparticles against clinical and standard strains of Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, and Enterococcus faecalis by the disc diffusion method. According to the result of this study, ZnO nanoparticles synthesized using Lippia adoensis leaf extract showed promising result against both Gram-positive and Gram-negative bacterial strains with a maximum inhibition zone of 14 mm and 12 mm, respectively, using uncalcinated form of the synthesized ZnO nanoparticles.


Author(s):  
Shymala Rajan Abhinaya ◽  
Ramakrishnan Padmini

Objective: The objective of the study is to perform the synthesis of zinc oxide nanoparticles using the bark extract of Pterocarpus marsupium and to evaluate its biomedical applications.Methods: Various concentrations of zinc acetate are used, and synthesis conditions were optimized to get a stable nanoparticle. The finest synthesis condition for zinc oxide nanoparticle production was at pH 7 with 20 ml extract, zinc acetate 10 mM, and 120 min of reaction time. The synthesized nanopowder was characterized using various analytical techniques, such as ultraviolet (UV)-visible spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The synthesized nanoparticles were tested for their antimicrobial, anti-inflammatory, inhibition of lipid peroxidation, and inhibition of amylase activity.Results: The size range of nanoparticles obtained was in the range of 10–32 nm as reported by SEM. The UV-visible absorption spectrum of the synthesized nanoparticle showed a peak at 340 nm, which confirmed the presence of nanoparticles. FTIR spectroscopy analysis indicated the presence of zinc oxide stretching at 666.22 cm-1. Further, the IR spectra indicated the presence of alcohols and acids, which can act as capping agents around the nanoparticles. XRD analysis confirmed the crystalline nature of nanoparticles.The synthesized nanoparticle showed appreciable antimicrobial activity. Zinc oxide nanoparticles at 40 μg/well were tested against phytopathogens, Pseudomonas aeruginosa, Staphylococcus aureus, Aspergillus flavus, and Aspergillus niger showed 16, 13, 15, and 16 mm zones of inhibition, respectively. The synthesized nanoparticle showed a considerable increase in inhibition of lipid peroxidation and amylase activity. The nanoparticle also exhibited appreciable anti-inflammatory activity measured by the inhibition of albumin denaturation.Conclusion: The study instigates the simple and convenient method of synthesizing zinc oxide nanoparticles using P. marsupium and its few biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document