scholarly journals Synthesis and ESR studies of multiphenyl porphyrins

2021 ◽  
Vol 12 (5) ◽  
pp. 6211-6224

The synthesis of tetra biphenyl and tetra triphenyl derivatives of porphyrin has been achieved with relative ease, and although the compounds show the expected low solubility in organic solvents, their tendency to form aggregates was observed. They are sufficiently dispersed to allow characterization by 1H, 13C, mass spectrometry, and determine their photophysical properties. The presence of 8 hydroxyl groups and 12 aromatic rings in the structure of the porphyrin showed to be able to stabilize the superoxide anion. This approach allows the possibility of using these compounds as building blocks and could be applicable to synthesizing other highly structurally uniform and well-defined porphyrin derivatives in good yields.

2021 ◽  
Author(s):  
Anurag Mukherjee ◽  
Suhrit Ghosh

Naphthalene-diimide (NDI) derived building blocks have been explored extensively for supramolecular assembly as they exhibit attractive photophysical properties, suitable for applications in organic optoelectronics. Core-substituted derivatives of the NDI chromophore (cNDI) differ significantly from the parent NDI dye in terms of optical and redox properties. Adequate molecular engineering opportunities and substitution-dependent tunable optoelectronic properties make cNDI derivatives highly promising candidates for supramolecular assembly and functional material. This short review discusses recent development in the area of functional supramolecular assemblies based on cNDIs and related molecules.


Author(s):  
A.V. Kovtun ◽  
◽  
S.A. Varenichenko ◽  
E.V. Zaliznaya ◽  
A.V. Mazepa ◽  
...  

We have proposed a method for the synthesis of previously unknown bromo xanthenes using the reagent PBr3/DMF as a rearrangement initiator. Bromo derivatives of xanthenes in the form of organic perchlorates were prepared by reacting the corresponding benzo(naphtho)dioxin-4(1)-ones with a three-fold excess of Vilsmeier-Haack PBr3/DMF reagent at 1100C for 2 hours, followed by the addition of sodium perchlorate. The conditions for the synthesis of formyl derivatives of xanthenes under conditions of acid hydrolysis were selected. The structure of the compounds was confirmed by 1H and 13C NMR spectral data and mass spectrometry. Preliminary studies showed that it is possible to selectively replace the dimethylamino group and the bromine atom with various nucleophiles in bromo derivatives of xanthenes, which opens up wide possibilities for the synthesis of low-molecular building blocks and dyes.


2015 ◽  
Vol 62 (s9) ◽  
pp. 41-45 ◽  
Author(s):  
F. Šeršeň ◽  
M. Lácová

AbstractNineteen derivatives of coumarin were tested on the scavenging of 2,2-diphenyl-1-picrylhydrazyl, hydroxyl and superoxide anion radicals. It was found that antioxidant activity exhibits only such coumarins that contain hydroxyl groups. The derivatives without hydroxyl group showed very low antioxidant effectiveness or they were ineffective. On the other hand, the greatest antioxidant effectiveness was exhibited by coumarin derivatives that contained hydroxyl groups in 6 or 8 position, whereas the effectiveness of derivatives with one hydroxyl group in 4, 5 or 7 position was very low. Based on scavenging of the above-mentioned radicals, it was found that the most effective scavengers were 7,8-dihydroxy-4-methylcoumarin (i.e. compound that contains two hydroxyl groups in 7 and 8 positions), (7,8-dihydroxy-2-oxo-2H-chromen-4-yl)acetic acid (this compound contains in addition to two hydroxyl groups in 7 and 8 positions also one hydroxyl group in the acidic residue), esculetin (6,7-dihydroxycoumarin) and 6,7-dihydroxy-4-methylcoumarin.


1971 ◽  
Vol 125 (3) ◽  
pp. 811-819 ◽  
Author(s):  
F. Compernolle ◽  
G. P. Van Hees ◽  
J. Fevery ◽  
K. P. M. Heirwegh

1. The structures of the α2- and α3-azopigments, prepared by diazotization of dog bile with ethyl anthranilate, were shown by mass spectrometry and g.l.c. to correspond to azobilirubin β-d-xylopyranoside and azobilirubin β-d-glucopyranoside respectively. 2. Both azopigments consist of a mixture of two methyl vinyl isomers having structures (IIIa) and (IIIb) for the α2-azopigment and structures (IVa) and (IVb) for the α3-azopigment. Separation of methyl vinyl isomers was obtained by t.l.c. or column chromatography performed on the acetylated azopigments. Hydrolysis of the less polar acetates derived from components (IIIa) and (IVa) gave rise to the azopigment (Ia), whereas hydrolysis of the more polar acetates derived from components (IIIb) and (IVb) gave rise to the azopigment acid (Ib). The positions of methyl and vinyl substituents in compounds (Ia) and (Ib) were assigned on the basis of their n.m.r. spectra. 3. Molecular ions in the mass spectra of the trimethylsilyl and acetyl derivatives of the azopigments indicated the presence of a pentose and a hexose conjugating sugar. 4. The ester functions linking the sugars to the propionic acid side chain of azobilirubin were demonstrated by ammonolysis and identification of the amide of azobilirubin as the aglycone derivative. 5. The sugar moieties were shown to occur as xylopyranose (α2) and glucopyranose (α3), bound at C-1, by application of a sequence of reactions performed on a micro-scale. The sugar hydroxyl groups were acetylated and the 1-acyl aglycone removed selectively by treatment with hydrogen bromide in acetic acid. Hydrolysis of the 1-bromo sugar acetates followed by acetylation afforded the α- and β-xylopyranose tetra-acetates and α- and β-glucopyranose penta-acetates, identified by a combination of g.l.c. and mass spectrometry. 6. The validity of this degradation scheme was confirmed (a) by g.l.c.–mass spectrometry identification of the α- and β-1-propionyl derivatives of glucopyranose tetra-acetate, obtained from the α3-azopigment after final reaction with propionic anhydride; (b) by subjecting the acetates of αβ-glucopyranose, αβ-xylofuranose and αβ-glucofuranose to the same sequence of reactions.


Author(s):  
Philip Isett

This chapter deals with the coarse scale velocity. It begins the proof of Lemma (10.1) by choosing a double mollification for the velocity field. Here ∈ᵥ is taken to be as large as possible so that higher derivatives of velement are less costly, and each vsubscript Element has frequency smaller than λ‎ so elementv⁻¹ must be smaller than λ‎ in order of magnitude. Each derivative of vsubscript Element up to order L costs a factor of Ξ‎. The chapter proceeds by describing the basic building blocks of the construction, the choice of elementv and the parametrix expansion for the divergence equation.


2019 ◽  
Author(s):  
Torben Sick ◽  
Niklas Keller ◽  
Nicolai Bach ◽  
Andreas Koszalkowski ◽  
Julian Rotter ◽  
...  

Covalent organic frameworks (COFs), consisting of covalently connected organic building units, combine attractive features such as crystallinity, open porosity and widely tunable physical properties. For optoelectronic applications, the incorporation of heteroatoms into a 2D COF has the potential to yield desired photophysical properties such as lower band gaps, but can also cause lateral offsets of adjacent layers. Here, we introduce dibenzo[g,p]chrysene (DBC) as a novel building block for the synthesis of highly crystalline and porous 2D dual-pore COFs showing interesting properties for optoelectronic applications. The newly synthesized terephthalaldehyde (TA), biphenyl (Biph), and thienothiophene (TT) DBC-COFs combine conjugation in the a,b-plane with a tight packing of adjacent layers guided through the molecular DBC node serving a specific docking site for successive layers. The resulting DBC-COFs exhibit a hexagonal dual-pore kagome geometry, which is comparable to COFs containing another molecular docking site, namely 4,4′,4″,4‴-(ethylene-1,1,2,2-tetrayl)-tetraaniline (ETTA). In this context, the respective interlayer distances decrease from about 4.60 Å in ETTA-COFs to about 3.6 Å in DBC-COFs, leading to well-defined hexagonally faceted single crystals sized about 50-100 nm. The TT DBC-COFs feature broad light absorption covering large parts of the visible spectrum, while Biph DBC-COF shows extraordinary excited state lifetimes exceeding 10 ns. In combination with the large number of recently developed linear conjugated building blocks, the new DBC tetra-connected node is expected to enable the synthesis of a large family of strongly p-stacked, highly ordered 2D COFs with promising optoelectronic properties.


2019 ◽  
Vol 16 (7) ◽  
pp. 653-688 ◽  
Author(s):  
Leena Kumari ◽  
Salahuddin ◽  
Avijit Mazumder ◽  
Daman Pandey ◽  
Mohammad Shahar Yar ◽  
...  

Heterocyclic compounds are well known for their different biological activity. The heterocyclic analogs are the building blocks for synthesis of the pharmaceutical active compounds in the organic chemistry. These derivatives show various type of biological activity like anticancer, antiinflammatory, anti-microbial, anti-convulsant, anti-malarial, anti-hypertensive, etc. From the last decade research showed that the quinoline analogs plays a vital role in the development of newer medicinal active compounds for treating various type of disease. Quinoline reported for their antiviral, anticancer, anti-microbial and anti-inflammatory activity. This review will summarize the various synthetic approaches for synthesis of quinoline derivatives and to check their biological activity. Derivatives of quinoline moiety plays very important role in the development of various types of newer drugs and it can be used as lead compounds for future investigation in the field of drug discovery process.


1980 ◽  
Vol 45 (2) ◽  
pp. 427-434 ◽  
Author(s):  
Kveta Heinrichová ◽  
Rudolf Kohn

The effect of exo-D-galacturonanase from carrot on O-acetyl derivatives of pectic acid of variousacetylation degree was studied. Substitution of hydroxyl groups at C(2) and C(3) of D-galactopyranuronic acid units influences the initial rate of degradation, degree of degradation and its maximum rate, the differences being found also in the time of limit degradations of the individual O-acetyl derivatives. Value of the apparent Michaelis constant increases with increase of substitution and value of Vmax changes. O-Acetyl derivatives act as a competitive inhibitor of degradation of D-galacturonan. The extent of the inhibition effect depends on the degree of substitution. The only product of enzymic reaction is D-galactopyranuronic acid, what indicates that no degradation of the terminal substituted unit of O-acetyl derivative of pectic acid takes place. Substitution of hydroxyl groups influences the affinity of the enzyme towards the modified substrate. The results let us presume that hydroxyl groups at C(2) and C(3) of galacturonic unit of pectic acid are essential for formation of the enzyme-substrate complex.


2019 ◽  
Vol 15 ◽  
pp. 2013-2019 ◽  
Author(s):  
Esther Nieland ◽  
Oliver Weingart ◽  
Bernd M Schmidt

ortho-Fluoroazobenzenes are a remarkable example of bistable photoswitches, addressable by visible light. Symmetrical, highly fluorinated azobenzenes bearing an iodine substituent in para-position were shown to be suitable supramolecular building blocks both in solution and in the solid state in combination with neutral halogen bonding acceptors, such as lutidines. Therefore, we investigate the photochemistry of a series of azobenzene photoswitches. Upon introduction of iodoethynyl groups, the halogen bonding donor properties are significantly strengthened in solution. However, the bathochromic shift of the π→π* band leads to a partial overlap with the n→π* band, making it slightly more difficult to address. The introduction of iodine substituents is furthermore accompanied with a diminishing thermal half-life. A series of three azobenzenes with different halogen bonding donor properties are discussed in relation to their changing photophysical properties, rationalized by DFT calculations.


Sign in / Sign up

Export Citation Format

Share Document