scholarly journals Cinnamaldehyde-loaded chitosan nanoparticles: characterization and antimicrobial activity

2019 ◽  
Vol 9 (4) ◽  
pp. 4060-4065 ◽  

Due to its wide spectrum activity and low toxicity, chitosan has shown to be a promising molecule to be applied in food science and technology. Meanwhile, cinnamaldehyde (the main component in cinnamon flavor) has shown potential uses as a strong antimicrobial compound. To improve the antimicrobial activity of chitosan, we have prepared N-acylated chitosan nanoparticles, with cinnamaldehyde as acylating reagent. The properties of the modified material were compared against the ones of the unmodified chitosan nanoparticles. Modification of the material was characterized by means of FT-IR spectroscopy with the identification of the imine group formed due to the addition of cinnamaldehyde (soft band appearance in the range of 1630-1660 cm-1 ). Meanwhile, 1H NMR analysis was used to quantify the modification. Nanoparticles of both, the modified and the unmodified chitosan, were characterized by TEM and DLS analysis showing a higher diameter size and a reduced zeta potential for the cinnamaldehyde loaded material than the chitosan nanoparticles. Finally, their activity was tested against E. coli and L. monocytogenes by measuring the minimal inhibitory concentration, showing a greater activity when the nanoparticles were functionalized (with an observed increase of the activity with the higher loading of cinnamaldehyde). This works evidence that the N-acylated chitosan nanoparticles have promising and potential use in food preservation.

2014 ◽  
Vol 4 (4) ◽  
pp. 1-8
Author(s):  
Xuan Du Dang ◽  
Phuoc Phuc Bui ◽  
Thi Thuy Tran ◽  
Anh Quoc Le ◽  
Van Phu Dang ◽  
...  

Degradation of chitosan in swollen state with hydrogen peroxide solution (5% w/v) by γ-irradiation was investigated. Molecular weight (Mw) of irradiated chitosan was determined by gel permeation chromatography (GPC). Fourier transform infrared (FT-IR) and ultraviolet-visible (UV-vis) spectrawere analyzed to study the structure changes of degraded chitosan. The results showed that the chitosan of low Mw ~30-45 kDawas efficiently prepared by γ-irradiation of chitosan swollen in hydrogen peroxide solution at low dose less than 20kGy. The main structure as well as the degree of deacetylation of the degraded chitosan was almost no significant change. Furthermore, the radiation degradation yield (Gs) was remarkably enhanced by the presence of H2O2. The obtained low Mw chitosan revealed high antimicrobial activity for E. colithat can be used for food preservation and other purposes as well.


2021 ◽  
Vol 11 (5) ◽  
pp. 13652-13666

Replacement of conventional chemicals with modern fewer hazards one has great attention via green chemistry. Chitosan nanoparticles (CSNPs) were prepared from the reaction of chitosan (0.2 g/100 ml) with tripolyphosphate (o.1 g/100 ml) through the ionotropic gelation method. CSNPs with different concentrations were used for cotton fabrics to impart antimicrobial activity and enhance their dyeing affinity towards acid dyes. FT-IR spectroscopy and TEM imaging were used to characterized CSNPs. SEM and TGA. Effect of CSNPs concentrations on cotton fabric dyeing affinity was recorded from colorimetric data. The antimicrobial activity of treated dyed fabrics was evaluated via disk diffusion method against S. aureus, E. coli, Candida, and Aspergillus Niger. Results have shown that cotton fabrics treated with 0.3 g/100 ml record the highest K/S values, Corresponding to the highest dyeing affinity towards acid dyes. In addition, treated dyed cotton fabrics were showed higher antimicrobial activity towards tested microorganisms because of the presence of CSNPs. Morphological studies on the untreated, treated, and treated dyed cotton fabrics via SEM imaging confirmed that CSNPs coated cotton fabrics. In addition, the light and washing fastness properties of these fabrics confirmed their durability. Therefore, CSNPs were used to impart cotton fabrics' antibacterial activity and improve their dyeability with acid dye.


2019 ◽  
Vol 16 (3) ◽  
pp. 444-448 ◽  
Author(s):  
Biyun Su ◽  
Yaning Li ◽  
Dandan Pan ◽  
Paison Faida ◽  
Tingyu Yan ◽  
...  

Aim and Objective: The late transition metal complexes with five-membered heterocyclic mono-imine ligands have attracted much attention because of their potential application in olefin polymerization catalysis. In order to increase the coordination ability of heteroatom N and S to center metals, CH3 group was introduced into the side arm of pyrrole imine and thiophene imine respectively, to get two series of novel five-membered heterocyclic imine compounds, mono(imino)pyrroles and mono(imino)thiophenes Materials and Methods: Two series of novel five-membered heterocyclic compounds with the mono-imine group were synthesized from the p-toluene sulfonic acid catalyzed Schiff base condensation of aromatic amines and 2-acetylpyrrole/ 2-acetylthiophene respectively, using CH3 group to substitute the common H atom on the side arm of pyrrole imine/ thiophene imine. Results: All the heterocyclic mono-imine compounds were characterized adequately by means of 1H NMR, 13C NMR, FT-IR, elementary analysis, as well as X-ray crystallographic diffraction. The reactivity differences between two precursor 2-acetylpyrrole and 2-acetylthiophene with aromatic amines were compared and discussed in detail. Conclusion: Compared to traditional heating methods, the solvent-free microwave irradiation seemed more efficient to prepare these series of five-membered heterocyclic mono-imine compounds, which resulted in a higher yield and cleaner product.


Author(s):  
Devidas G. Anuse ◽  
Suraj N. Mali ◽  
Bapu R. Thorat ◽  
Ramesh S. Yamgar ◽  
Hemchandra K. Chaudhari

Background: Antimicrobial resistance is major global health problem, which is being rapidly deteriorating the quality of human health. Series of substituted N-(benzo[d]thiazol-2-yl)-2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)acetamide (3a-j) were synthesized from substituted N-(benzo[d]thiazol-2-yl)-2-chloroacetamide/bromopropanamide (2a-j) and 6-fluoro-3-(piperidin-4-yl)benzo[d]isoxazole (2) and further evaluated for their docking properties and antimicrobial activity. Methods: All synthesized compounds were characterized by FT-IR, NMR and Mass spectral analysis. All compounds were allowed to dock against different antimicrobial targets having PDB ID: 1D7U and against common antifungal target having PDB ID: 1EA1. Results: The compounds 3d and 3h were showed good activity against Methicillin-resistant Staphylococcus aureus (MRSA, resistance Gram-positive bacteria). All synthesized compounds showed good to moderate activity against selected bacterial and fungal microbial strains. If we compared the actual in-vitro antimicrobial activity and in-silico molecular docking study, we found that molecules 3i and 3h were more potent than the others. Conclusion: Our current study would definitely pave the new way towards designing and synthesis of more potent 2-aminobenzothiazoles derivatives.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1406
Author(s):  
Rita Cava-Roda ◽  
Amaury Taboada-Rodríguez ◽  
Antonio López-Gómez ◽  
Ginés Benito Martínez-Hernández ◽  
Fulgencio Marín-Iniesta

Plant bioactive compounds have antimicrobial and antioxidant activities that allow them to be used as a substitute for synthetic chemical additives in both food and food packaging. To improve its sensory and bactericidal effects, its use in the form of effective combinations has emerged as an interesting possibility in the food industry. In this study, the antimicrobial activities of essential oils (EOs) of cinnamon bark, cinnamon leaves, and clove and the pure compounds vanillin, eugenol, and cinnamaldehyde were investigated individually and in combination against Listeria monocytogenes and Escherichia coli O157:H7. The possible interactions of combinations of pure compounds and EOs were performed by the two-dimensional checkerboard assay and isobologram methods. Vanillin exhibited the lowest antimicrobial activity (MIC of 3002 ppm against L. monocytogenes and 2795 ppm against E. coli O157:H7), while clove and cinnamon bark EOs exhibited the highest antimicrobial activity (402–404 against L. monocytogenes and 778–721 against E. coli O157:H7). For L. monocytogenes, pure compound eugenol, the main component of cinnamon leaves and clove, showed lower antimicrobial activity than EOs, which was attributed to the influence of the minor components of the EOs. The same was observed with cinnamaldehyde, the main component of cinnamon bark EO. The combinations of vanillin/clove EO and vanillin/cinnamon bark EO showed the most synergistic antimicrobial effect. The combination of the EOs of cinnamon bark/clove and cinnamon bark/cinnamon leaves showed additive effect against L. monocytogenes but indifferent effect against E. coli O157:H7. For L. monocytogenes, the best inhibitory effects were achieved by cinnamon bark EO (85 ppm)/vanillin (910 ppm) and clove EO (121 ppm)/vanillin (691 ppm) combinations. For E. coli, the inhibitory effects of clove EO (104 ppm)/vanillin (1006 ppm) and cinnamon leaves EO (118 ppm)/vanillin (979 ppm) combinations were noteworthy. Some of the tested combinations increased the antimicrobial effect and would allow the effective doses to be reduced, thereby offering possible new applications for food and active food packaging.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 340
Author(s):  
Kitherian Sahayaraj ◽  
Balakrishnan Saranya ◽  
Samy Sayed ◽  
Loko Yêyinou Laura Estelle ◽  
Koilraj Madasamy

The foam produced by nymphs of Poophilus costalis on eleven different host plants belonging to eight families on St. Xavier’s College campus in India was studied over five months. The chemical composition and antimicrobial activity of these biofoams were investigated. The results revealed that P. costalis preferred Theporsia purpurea and Mimosa pudica for laying their eggs and producing foam, over the other tested plants. P. costalis produce their foam on either nodes or internodes on monocotyledons (30%) (p < 0.05), whereas on dicotyledons, they produce more foam on the stems (63.8%) than on the leaves (6.2%) (p < 0.01). The number of nymphs in each piece of foam from P. costalis varied from 1 to 3 (mean = 1.8 per plant). They produced their foam (5.7 to 45.2 cm) from the ground level on a plant. The length and breadth of a piece of foam ranged from 1.0 to 3.9 cm and 0.6 to 4.7 cm, respectively. The foam tended to be cooler than the environment. Qualitative profiling showed that the foam consists of carbohydrates, including maltose; trypsin; amino acids; protease. The foam was also analyzed using a spectrophotometer, Fourier transform infrared spectroscopy (FT-IR), gas chromatography–mass spectroscopy (GC-MS), and high-performance liquid chromatography (HPLC). The antimicrobial activity of the biofoam was the greatest against Staphylococcus aureus, the growth of which was reduced by 55.9 ± 3.9%, suggesting that the foam could be used as an antimicrobial product. However, no activities were observed against Fusarium oxysporum and Candida albicans.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
S. Nagashree ◽  
P. Mallu ◽  
L. Mallesha ◽  
S. Bindya

A series of methyl-2-aminopyridine-4-carboxylate derivatives,3a–f,were synthesized in order to determine theirin vitroantimicrobial activity. The chemical structures of the synthesized compounds were confirmed by elemental analyses, FT-IR, and1H NMR spectral studies. Among the synthesized compounds,3cand3dshowed good antimicrobial activity compared to other compounds in the series.


Sign in / Sign up

Export Citation Format

Share Document