scholarly journals The potential role of caffeic acid in coffee as cyclooxygenase-2 (COX-2) inhibitor: in silico study

2019 ◽  
Vol 9 (5) ◽  
pp. 4424-4427 ◽  

Caffeic acid was formed from hydrolyzation chlorogenic acid caused roasting coffee. Caffeic acid has anti-inflammatory properties by in vitro and in vivo analysis. Inflammation is the body will be activator COX-2 as mediator inflammation. This study purpose to prediction, investigate and analyze caffeic acid as potential theuraphic to inhibit COX-2 by in silico study. The method of this research using in silico compound interaction models. COX-2 Protein data was taken from Protein Data Bank, caffeic acid from PubChem. Protein-ligand interaction docking using HEX 8.0.0. Although visualization and analysis of the molecular interactions of caffeic acid and COX-2 conducted by the Discovery Studio software 4.1. Caffeic acid is a potential therapist because easily absorbed and has high permeability. The results show that interacted between COX-2 and caffeic acid. The interactions showed by seven amino acid residues, which bind with the caffeic acid with hydrogen bond type. Energy binding formed from ligand and protein -210.23cal/mol. Interaction caffeic acid and COX-2 has a positive impact which potential as inhibitor COX-2.

Author(s):  
DESSY AGUSTINI ◽  
LEO VERNADESLY ◽  
DELVIANA ◽  
THEODORUS

Objectives: This research aims to determine the efficacy of compounds in robusta coffee against colorectal cancer through the inhibition of the T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) receptor. Methods: This in silico study has been conducted in computing platform from June to August 2021. The selected test compounds would go through the Lipinski rule screening through the SwissADME website and the compounds that met these regulations would be docked to the TIGIT protein using AutoDock Tools and AutoDock Vina. The interactions with the highest binding energies were visualized using BIOVIA Discovery Studio 2020. The test compounds then underwent a toxicity profile analysis on the admetSAR 2.0 website. Results: All test compounds complied with the Lipinski rule. The molecular docking results showed the highest binding energy in kahweol and cafestol (−8.1 kcal/mol) compared to OMC (−7.9 kcal/mol), chlorogenic acid (−7.8 kcal/mol), caffeic acid (−6.3 kcal/mol), caffeine (−6.1 kcal/mol), trigonelline (−5.3 kcal/mol), HMF (−5.1 kcal/mol), furfuryl alcohol (−4.4 kcal/mol), and 5-fluorouracil as the comparator drug (−5.3 kcal/mol). Kahweol, cafestol, and 5-fluorouracil revealed the hydrophobic interactions and hydrogen bonds with amino acid residues in TIGIT. Kahweol and cafestol unveiled minimal toxicity prediction Conclusion: Kahweol and cafestol demonstrated the best results in inhibiting the TIGIT protein which played a role in colorectal cancer. In vitro and in vivo studies are needed to strengthen the findings of this research.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 265
Author(s):  
Md Minarul Islam ◽  
Rashedul Alam ◽  
Hea-Jong Chung ◽  
Nazim Uddin Emon ◽  
Mohammad Fazlul Kabir ◽  
...  

Bauhinia scandens L. (Family: Fabaceae) is commonly used to treat cholera, diarrhea, asthma, and diabetes disorder in integrative medicine. This study aimed to screen the presence of phytochemicals (preliminary and UPLC-QTOF–M.S. analysis) and to examine the pharmacological activities of Bauhinia scandens L. stems (MEBS) stem extracts. Besides, in silico study was also implemented to elucidate the binding affinity and drug capability of the selected phytochemicals. In vivo anti diarrheal activity was investigated in mice models. In vitro, antibacterial and antifungal properties of MEBS against several pathogenic strains were evaluated using the disc diffusion method. In addition, in silico study has been employed using Discovery studio 2020, UCFS Chimera, PyRx autodock vina, and online tools. In the anti-diarrheal investigation, MEBS showed a significant dose-dependent inhibition rate in all three methods. The antibacterial and antifungal screening showed a remarkable zone of inhibition, of the diameter 14–26 mm and 12–28 mm, by MEBS. The present study revealed that MEBS has remarkable anti-diarrheal potential and is highly effective in wide-spectrum bacterial and fungal strains. Moreover, the in silico study validated the results of biological screenings. To conclude, MEBS is presumed to be a good source in treating diarrhea, bacterial and fungal infections.


Reproduction ◽  
2021 ◽  
Author(s):  
Marina Izvolskaia ◽  
Vasilina Ignatiuk ◽  
Ayshat Ismailova ◽  
Viktoria Sharova ◽  
Liudmila Zakharova

Sexual performance in adult male rats is highly sensitive to prenatal stress which can affect the functionality of the reproductive system and various brain structures involved in modulating sexual behavior. The immunomodulatory effect of mouse IgG on reproductive maturity in male offspring after LPS exposure in vivo and in vitro was studied. Prenatal IgG injection (20 µg / mouse) had a positive impact on the puberty of male mice whose mothers were exposed to LPS (100 µg / kg) on the 12th day of pregnancy. The number of Sertoli cells were increased, whereas the body weight and the number of symplastic spermatids were decreased in offspring as compared to LPS-treated animals. Besides, IgG had a positive effect on altered hormone levels: reduced estradiol level on the 5th and 14th postnatal days and increased testosterone level on the 30th postnatal day in blood that led to an increased number of mounting attempts in sexually mature males. The cAMP-dependent pathway may be involved in the regulation of the LPS-induced inflammation. IgG reduced the increased level of cAMP in mouse peritoneal macrophages activated by LPS in vitro. IgG is able to modulate inflammation processes, but its exposure time is important.


Author(s):  
Krishna Chaithanya K. ◽  
Gopalakrishnan V. K. ◽  
Zenebe Hagos ◽  
Govinda Rao D.

Objective: The main objective of the present study was to evaluate the anti-inflammatory activity of isolated bioactive flavonoid Mesuaferrin-A from the bark of Mesuaferrea L. by in vitro, in vivo and in silico approach.Methods: To evaluate the effect of isolated bioactive flavonoid Mesuaferrin-A on arachidonic acid metabolizing enzymes (PLA2, COX-2 and 5-LOX) using in vitro methods, followed by carrageenan-induced paw edema model by in vivo and to determine the binding orientation and interactions of Mesuaferrin-A onarachidonic acid metabolizing enzymes (PLA2, COX-2 and 5-LOX) crystal proteins using molecular docking (in silico) studies.Results: Mesuaferrin-A exhibited a dose-dependent significant 5-LOX inhibitory and considerable COX-2 inhibitory activity by in vitro, The inhibitory activities of 5-LOX and COX-2 at 100µg/ml were found to be 78.67%, 81.03% with IC50 values of 45.22µg/ml and 35.74µg/ml respectively. Whereas Mesuaferrin-A showed less PLA2 inhibitory activity. Mesuaferrin-A showed 68.34% inhibitory activity at 400 mg/kg body weight at the late phase of carrageenan-induced paw edema, and In silico studies demonstrated that Mesuaferrin-A strongly binds with 5-LOX and COX-2, these strong binding affinity of Mesuaferrin-A on active site amino acids of 5-LOX and COX-2 may be responsible for inhibition of enzyme activity. Mesuaferrin-A showeda comparable 5-LOX and COX-2 inhibition activity with (positive control).Conclusion: It was concluded that Mesuaferrin-A act as 5-LOX and COX dual inhibitor, from the results it was suggests that Mesuaferrin-A, may be an effective preventive and therapeutic approach for patients with inflammatory-related diseases.


2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Aveek Samanta ◽  
Tilak Raj Maity ◽  
Sudip Das ◽  
Animesh Kumar Datta ◽  
Siraj Datta

Abstract Background Etoposide is one of the most potential anti-cancerous drugs that targets topoisomerase II (topoII) and inhibits its activity by ligation with the DNA molecule. Results In silico study confirmed that the etoposide-binding sites of topoII are conserved among the plants and human. The efficacy of the drug on plant system was initially assessed using germinated grass pea (Lathyrus sativus L.) seedlings (in vivo) in relation to radicle length and mitotic index. The callus system (in vitro) was also used to elucidate the effect of etoposide on callus growth kinetics. Furthermore, it was observed that etoposide able to inhibit the division of polyploid cells induced by colchicine treatment (0.5%, 8 h). To determine the molecular interaction, topoII was isolated from young grass pea leaves using polyethylene glycol fractionation and ammonium sulphate precipitation followed by column chromatography on CM-Sephadex (C-25). The plasmid linearization assays by isolated plant topoII in the presence of etoposide significantly revealed the functional similarity of plants and human topoII. Results indicated that the effect of etoposide on plant topoII is significant. Conclusions This study may pave the way to develop a plant-based assay system for screening the topoisomerase targeted anti-cancerous drugs, as it is convenient and cost-effective.


PLoS ONE ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. e0238834
Author(s):  
Amanda Pâmela Santos Queiroz ◽  
Manolo Cleiton Costa Freitas ◽  
José Rogério A. Silva ◽  
Anderson Bentes Lima ◽  
Leila Sawada ◽  
...  

2021 ◽  
Vol 17 ◽  
Author(s):  
Mojgan Nejabat ◽  
Razieh Ghodsi ◽  
Farzin Hadizadeh

Background: The Covid-19 virus emerged a few months ago in China and infections rapidly escalated into a pandemic. Objective: To date, there is no selective antiviral agent for the management of pathologies associated with covid-19 and the need for an effective agent against it is essential. Method: In this work two home-made databases from synthetic quinolines and coumarins were virtually docked against viral proteases (3CL and PL), human cell surface proteases (TMPRSS2 and furin) and spike proteins (S1 and S2). Chloroquine, a reference drug without a clear mechanism against coronavirus was also docked on mentioned targets and the binding affinities compared with title compounds. Result: The best compounds of synthetic coumarins and quinolines for each target were determined. All compounds against all targets showed binding affinity between -5.80 to -8.99 kcal/mol in comparison with the FDA-approved drug, Chloroquine, with binding affinity of -5.7 to -7.98 kcal/mol. Two compounds, quinoline-1 and coumarin-24, were found to be effective on three targets – S2, TMPRSS2 and furin – simultaneously, with good predicted affinity between -7.54 to -8.85 kcal/mol. In silico ADME studies also confirmed good oral absorption for them. Furthermore, PASS prediction was calculated and coumarin-24 had higher probable activity (Pa) than probable inactivity (Pi) with acceptable protease inhibitory as well as good antiviral activity against Hepatitis C virus (HCV), Human immunodeficiency virus (HIV) and influenza. Conclusion: Quinoline-1 and Coumarin-24 have the potential to be used against Covid-19. Hence these agents could be useful in combating covid-19 infection after further in vitro and in vivo studies.


2019 ◽  
Vol 100 (3) ◽  
pp. 986-994 ◽  
Author(s):  
Jing Wang ◽  
Jiang Zhao ◽  
Yong Yan ◽  
Dong Liu ◽  
Chengtao Wang ◽  
...  

2015 ◽  
Vol 77 (2) ◽  
Author(s):  
B. Samuel Thavamani ◽  
Molly Mathew ◽  
Dhanabal S. Palaniswamy

Protein-ligand interaction plays a major role in identification of the possible mechanism by which a ligand can bind with the target and exerts the pharmacological action. The present study aims to identify new possible candidates for treating Hepatocellular Carcinoma (HCC) by docking the reported phytochemicals present in Cissampelos pareira with the well known HCC targets using in-silico techniques. Although C. pareira demonstrated in vitro and in vivo anti-heptatocellular carcinoma activities, the mechanism remains uncertain. Selected compounds from C. pareira were docked using GLIDE software with known targets of hepatocellular carcinoma viz. Aurora Kinase, c-Kit, Fibroblast Growth Factor (FGF), Nuclear Factor kappa B (NF-kB), B-cell lymphoma-extra large (Bcl-xL) and Vascular Endothelial Growth Factor (VEGF). Among the compounds docked, pareitropone and pareirubrine B exhibited good hydrogen bonding interactions and binding energy with the targets of HCC taken in the study. Hence these compounds deserve consideration for further studies towards HCC.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 825
Author(s):  
Mohammad Khalid ◽  
Mohammed H. Alqarni ◽  
Ambreen Shoaib ◽  
Muhammad Arif ◽  
Ahmed I. Foudah ◽  
...  

The fruits of Spondias mangifera (S. mangifera) have traditionally been used for the management of rheumatism in the northeast region of India. The present study explores the probable anti-arthritis and anti-inflammatory potential of S. mangifera fruit extract’s ethanolic fraction (EtoH-F). To support this study, we first approached the parameters in silico by means of the active constituents of the plant (beta amyrin, beta sitosterol, oleonolic acid and co-crystallised ligands, i.e., SPD-304) via molecular docking on COX-1, COX-2 and TNF-α. Thereafter, the absorption, distribution, metabolism, excretion and toxicity properties were also determined, and finally experimental activity was performed in vitro and in vivo. The in vitro activities of the plant extract fractions were evaluated by means of parameters like 1,1-Diphenyl-2- picrylhydrazyl (DPPH), free radical-reducing potential, albumin denaturation, and protease inhibitory activity. The in vivo activity was evaluated using parameters like COX, TNF-α and IL-6 inhibition assay and arthritis score in Freund Adjuvant (CFA) models at a dose of 400 mg/kg b.w. per day of different fractions (hexane, chloroform, alcoholic). The molecular docking assay was performed on COX-1, COX-2 and TNF-α. The results of in vitro studies showed concentration-dependent reduction in albumin denaturation, protease inhibitors and scavenging activity at 500 µg/mL. Administration of the S. mangifera alcoholic fraction at the abovementioned dose resulted in a significant reduction (p < 0.01) in arthritis score, paw diameters, TNF-α, IL-6 as compared to diseased animals. The docking results showed that residues show a critical binding affinity with TNF-α and act as the TNF-α antagonist. The alcoholic fraction of S. mangifera extract possesses beneficial effects on rheumatoid arthritis as well as anti-inflammatory potential, and can further can be used as a possible agent for novel target-based therapies for the management of arthritis.


Sign in / Sign up

Export Citation Format

Share Document