scholarly journals Multi-Faceted Role of Silver and Gold Nanoparticles Synthesized from Biowaste and its in vitroAntibacterial, Antifungal and Antidiabetic Activities

2021 ◽  
Vol 11 (1) ◽  
pp. 3076-3092

Increasing global fish production, increasing the amount of waste generated, unsafe disposal of waste tissues like head, bones, skin, scales, fins etc., into land and open water reservoirs leads to environmental pollution. The role of nanobiotechnology in biowaste management is an innovative strategy to handle environmental issues. This study synthesized silver and gold nanoparticles from prawn heads using one millimolar AgNO3 and HAuCl4. Biosynthesized nanoparticles were characterized by UV -Visible spectroscopy, XRD, FTIR, SEM and EDAX. The maximum absorption spectrum was monitored at 437 nm for silver and 552 for gold nanoparticles. Antimicrobial activity was assessed using the resazurin assay method. MIC values obtained for the tested organisms revealed antimicrobial activities. P aeruginosa, K. pneumoniae, showed MIC at 15.6 µg for silver nanoparticles, and A. niger, A.flavus and C.albicans showed MIC at 125 µg for gold nanoparticles synthesized from the prawn head extract. IC 50 values of α- amylase activity were found to be 296 and 356 µg/ml for the silver and gold nanoparticles, respectively. IC50 values are about 705 and 2475 µg/ml for the silver and gold nanoparticles, respectively, in α-glucosidase activity. Conclusively silver and gold nanoparticles synthesized from prawn head extract (PHE) showed antibacterial, antifungal, and antidiabetic activities.

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2682 ◽  
Author(s):  
Francis J. Osonga ◽  
Ali Akgul ◽  
Idris Yazgan ◽  
Ayfer Akgul ◽  
Gaddi B. Eshun ◽  
...  

Plant-based pathogenic microbes hinder the yield and quality of food production. Plant diseases have caused an increase in food costs due to crop destruction. There is a need to develop novel methods that can target and mitigate pathogenic microbes. This study focuses on investigating the effects of luteolin tetraphosphate derived silver nanoparticles (LTP-AgNPs) and gold nanoparticles (LTP-AuNPs) as a therapeutic agent on the growth and expression of plant-based bacteria and fungi. In this study, the silver and gold nanoparticles were synthesized at room temperature using luteolin tetraphosphate (LTP) as the reducing and capping agents. The synthesis of LTP-AgNPs and LTP-AuNP was characterized by Transmission Electron Microscopy (TEM) and size distribution. The TEM images of both LTP-AgNPs and LTP-AuNPs showed different sizes and shapes (spherical, quasi-spherical, and cuboidal). The antimicrobial test was conducted using fungi: Aspergillus nidulans, Trichaptum biforme, Penicillium italicum, Fusarium oxysporum, and Colletotrichum gloeosporioides, while the class of bacteria employed include Pseudomonas aeruginosa, Aeromonas hydrophila, Escherichia coli, and Citrobacter freundii as Gram (−) bacteria, and Listeria monocytogenes and Staphylococcus epidermidis as Gram (+) bacterium. The antifungal study demonstrated the selective size and shape-dependent capabilities in which smaller sized spherical (9 nm) and quasi-spherical (21 nm) AgNPs exhibited 100% inhibition of the tested fungi and bacteria. The LTP-AgNPs exhibited a higher antimicrobial activity than LTP-AuNPs. We have demonstrated that smaller sized AgNPs showed excellent inhibition of A. nidulans growth compared to the larger size nanoparticles. These results suggest that LTP-AuNP and LTP-AgNPs could be used to address the detection and remediation of pathogenic fungi, respectively.


2014 ◽  
Vol 14 (6) ◽  
pp. 4357-4362 ◽  
Author(s):  
Hongyan Zhao ◽  
Feng Song ◽  
Fengxiao Wang ◽  
Jiadong Liu ◽  
Yanling Liu ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Namita Soni ◽  
Soam Prakash

Here, we have used the green method for synthesis of silver and gold nanoparticles. In the present study the silver (Ag) and gold (Au) nanoparticles (NPs) were synthesized by using the aqueous bark extract of Indian spice dalchini (Cinnamomum zeylanicum) (C. zyelanicumorC. verumJ. Presl). Additionally, we have used these synthesized nanoparticles for mosquito control. The larvicidal activity has been tested against the malaria vectorAnopheles stephensiand filariasis vectorCulex quinquefasciatus. The results were obtained using UV-visible spectrophotometer and the images were recorded with a transmission electron microscope (TEM). The efficacy tests were then performed at different concentrations and varying numbers of hours by probit analysis. The synthesized AgNPs were in spherical shape and average sizes (11.77 nm AgNPs and 46.48 nm AuNPs). The larvae ofAn. stephensiwere found highly susceptible to the synthesized AgNPs and AuNPs than theCx. quinquefasciatus. These results suggest that theC. zeylanicumsynthesized silver and gold nanoparticles have the potential to be used as an ideal ecofriendly approach for the control of mosquito.


2021 ◽  
Vol 13 (4) ◽  
pp. 1317-1325
Author(s):  
Latha Rathinam ◽  
S. P. Sevarkodiyone ◽  
J. Pandiarajan

Emerging nanobiotechnology has provided innovative techniques to synthesize nanoparticles through biological methods to explore the potentialities of biological sources like phytoextracts, microbes, animal secretions and excretion. This research studies the potential of vermiwash to synthesize the silver and gold nanoparticles and evaluate its in vitro effect of antimicrobial   and antidiabetic activities. The characterization of the nanoparticles was analyzed through various techniques. Ultraviolet (UV)-Visible spectroscopy showed the maximum absorption spectrum at 413 nm for silver and 541 nm for gold nanoparticles. Fourier transform infrared spectroscopy (FTIR) revealed the reducing agent involved in nanoparticles synthesis. Scanning electron microscope (SEM) images revealed the size of the silver and gold nanoparticles as 24 nm and 50 nm, respectively. Energy dispersive X-ray (EDAX) analysis revealed the elemental composition of the synthesized nanoparticles. X-ray diffraction (XRD) analysis confirmed the crystalline nature of the nanoparticles that displayed the preferential orientation of the crystals toward the (111) plane.  Antimicrobial activity was assessed using the resazurin assay method.  A minimum inhibitory concentration (MIC) of less than 7.8 µg was observed in Staphylococcus aureus and Klebsiella pneumoniae. In the antifungal activity, MIC at 250 µg was noted in Mucor sp. and Candida albicans. Antidiabetic activity was assessed by α-amylase and α-glucosidase inhibitory assay. IC50 of α-amylase and α-glucosidase activity of the silver nanoparticles was noted as 218 and 221 µg/mL, respectively. IC 50 value for the enzymatic assay dose-dependently confirmed the effect. Conclusively biosynthesized nanoparticles from vermiwash showed potential efficiency of antibacterial, antifungal and antidiabetic activities.


2014 ◽  
Vol 79 (12) ◽  
pp. 1505-1513 ◽  
Author(s):  
Dhiraj Brahman ◽  
Biswajit Sinha

Zn(II) and Cd(II) complexes of a Schiff base derived from quinazoline-4(3H) one and 2-formylphenoxy acetic acid were prepared and characterized by elemental and different spectroscopic (IR, UV-Visible and NMR) analyses. The elemental analysis indicated the formation of the complexes: [ML(AcO)].H2O, where M stands for Zn(II) and Cd(II) and L stands for quinazoline-4(3H)-one Schiff base. The molar conductivities of the prepared complexes revealed their non-electrolytic nature. The complexes were also investigated for their antimicrobial activities by using turbidometric assay method.


2009 ◽  
Vol 114 (2) ◽  
pp. 907-915 ◽  
Author(s):  
Luisa D’Urso ◽  
Giuseppe Grasso ◽  
Elena Messina ◽  
Corrado Bongiorno ◽  
Viviana Scuderi ◽  
...  

Author(s):  
Sonika Gupta

AbstractIn the present scenario, biogenic production of gold and silver nanoparticles has evoked considerable interest in terms of their diverse biomedi0058cal applications because of their extremely small size and large surface to volume ratio. Hence, the aims of the current study were to use plant extract for the biosynthesis of silver and gold nanoparticles and to evaluate their antibacterial and antioxidant activity in vitro. First, aqueous silver nitrate and chloroauric acid solutions have been treated with Wheat bran extract;reduction of the silver and chloroaurate ions is witnessed resulting in the formation of highly stable silver and gold nanoparticles in solution. Characterization of synthesized silver and gold nanospheres is made using UV-visible,SEMandTEManalysis, indicated that they ranged from 30 to 55 nm and 45 to 70 nm in size respectively.  The free radical scavenging potential has been investigated using DPPH assay, examined by a UV-visible spectrophotometer and found that AgNPs AuNPs exhibited exceptional potential- compared to wheat bran extract alone. Antimicrobial efficacy against dental disease causing pathogens - Staphylococcus aureus (MTCC 7443) and Streptococcus mutans (MTCC 497) was tested using agar diffusion method. The synthesized AgNPs and AuNPs efficiently inhibited the growth of respective pathogens. It could be concluded that these nanospheres can be act as potent antioxidant and antimicrobial agents for commercial application.                                                                                                  Keywords: AgNPS, AuNPS, Wheat Bran, DPPH Scavenging Assay, Antioxidant Activity, Antimicrobial Activity, SEM, TEM     


2021 ◽  
Author(s):  
Marcia Regina Franzolin ◽  
Daniella dos Santos Courrol ◽  
Karina de oliveira Gonçalves ◽  
Lilia Coronato Courrol

Abstract Green synthesis using plant extract is a sustainable method to obtain silver and gold nanoparticles (Ag and AuNPs) and was employed in this work. The Eugenia uniflora L. fruits and leaves extracts were used in nanoparticles synthesis. The photoreduction process with a xenon lamp and pH control improved optical properties and nanoparticles stability. The UV-vis, TEM, FTIR, and Zeta potential of the prepared solutions were obtained. The fluorescence spectra of Ag and AuNPs were investigated at different excitation wavelengths, which showed two kinds of fluorescence peaks. The shorter wavelength peaks red-shift with the increasing excitation wavelength, which results from the electron interband transitions, and the longer fixed wavelength peaks due to the local field enhancement. Finally, the antimicrobial tests were performed with Gram-negative and Gram-positive bacteria and Candida albicans. The best results were obtained with EuAgNPs prepared with fruits extract, photoreduction, and pH 7.0 (with a mean of 95.12% ± 10.29% of inhibition).


1961 ◽  
Vol 6 (02) ◽  
pp. 224-234 ◽  
Author(s):  
E. T Yin ◽  
F Duckert

Summary1. The role of two clot promoting fractions isolated from either plasma or serum is studied in a purified system for the generation of intermediate product I in which the serum is replaced by factor X and the investigated fractions.2. Optimal generation of intermediate product I is possible in the purified system utilizing fractions devoid of factor IX one-stage activity. Prothrombin and thrombin are not necessary in this system.3. The fraction containing factor IX or its precursor, no measurable activity by the one-stage assay method, controls the yield of intermediate product I. No similar fraction can be isolated from haemophilia B plasma or serum.4. The Hageman factor — PTA fraction shortens the lag phase of intermediate product I formation and has no influence on the yield. This fraction can also be prepared from haemophilia B plasma or serum.


Sign in / Sign up

Export Citation Format

Share Document