scholarly journals THE GREEN SYNTHESIS, CHARACTERIZATION AND EVALUATION OF ANTIOXIDANT AND ANTIMICROBIAL EFFICACY OF SILVER&GOLD NANOSPHERES SYNTHESIZED FROM WHEAT BRAN

Author(s):  
Sonika Gupta

AbstractIn the present scenario, biogenic production of gold and silver nanoparticles has evoked considerable interest in terms of their diverse biomedi0058cal applications because of their extremely small size and large surface to volume ratio. Hence, the aims of the current study were to use plant extract for the biosynthesis of silver and gold nanoparticles and to evaluate their antibacterial and antioxidant activity in vitro. First, aqueous silver nitrate and chloroauric acid solutions have been treated with Wheat bran extract;reduction of the silver and chloroaurate ions is witnessed resulting in the formation of highly stable silver and gold nanoparticles in solution. Characterization of synthesized silver and gold nanospheres is made using UV-visible,SEMandTEManalysis, indicated that they ranged from 30 to 55 nm and 45 to 70 nm in size respectively.  The free radical scavenging potential has been investigated using DPPH assay, examined by a UV-visible spectrophotometer and found that AgNPs AuNPs exhibited exceptional potential- compared to wheat bran extract alone. Antimicrobial efficacy against dental disease causing pathogens - Staphylococcus aureus (MTCC 7443) and Streptococcus mutans (MTCC 497) was tested using agar diffusion method. The synthesized AgNPs and AuNPs efficiently inhibited the growth of respective pathogens. It could be concluded that these nanospheres can be act as potent antioxidant and antimicrobial agents for commercial application.                                                                                                  Keywords: AgNPS, AuNPS, Wheat Bran, DPPH Scavenging Assay, Antioxidant Activity, Antimicrobial Activity, SEM, TEM     

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Namita Soni ◽  
Soam Prakash

Here, we have used the green method for synthesis of silver and gold nanoparticles. In the present study the silver (Ag) and gold (Au) nanoparticles (NPs) were synthesized by using the aqueous bark extract of Indian spice dalchini (Cinnamomum zeylanicum) (C. zyelanicumorC. verumJ. Presl). Additionally, we have used these synthesized nanoparticles for mosquito control. The larvicidal activity has been tested against the malaria vectorAnopheles stephensiand filariasis vectorCulex quinquefasciatus. The results were obtained using UV-visible spectrophotometer and the images were recorded with a transmission electron microscope (TEM). The efficacy tests were then performed at different concentrations and varying numbers of hours by probit analysis. The synthesized AgNPs were in spherical shape and average sizes (11.77 nm AgNPs and 46.48 nm AuNPs). The larvae ofAn. stephensiwere found highly susceptible to the synthesized AgNPs and AuNPs than theCx. quinquefasciatus. These results suggest that theC. zeylanicumsynthesized silver and gold nanoparticles have the potential to be used as an ideal ecofriendly approach for the control of mosquito.


2021 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Chandrayan Vaman Rao ◽  
Sneha Nayak ◽  
Chaitra Ganappa Ramakkanavar ◽  
Anusha Kunnathuli Jagadeesh ◽  
Priyanaka Hemba ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2370
Author(s):  
Mousa A. Alghuthaymi ◽  
Chandrasekaran Rajkuberan ◽  
Thiyagaraj Santhiya ◽  
Ondrej Krejcar ◽  
Kamil Kuča ◽  
...  

The developments of green-based metallic nanoparticles (gold) are gaining tremendous interest, having potential applications in health care and diagnosis. Therefore, in the present study, Polianthes tuberosa flower filtered extract was used as a reducing and stabilizing agent to synthesize gold nanoparticles (PtubAuNPs). The PtubAuNPs were extensively characterized by UV–visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and X-ray diffraction. The antibacterial activity of PtubAuNPs was determined by the agar well diffusion method; the PtubAuNPs performed extreme antagonistic activity against the tested pathogens. Furthermore, the cytotoxicity of the PtubAuNPs was evaluated in MCF 7 cells by MTT assay. The PtubAuNPs induced toxicity in MCF 7 cells with the least concentration of 100 µg/mL in a dose-dependent method by inducing apoptosis. Overall, the study manifested that PtubAuNPs are a potent nanomaterial that can be employed as an antimicrobial and anticancer agent.


2021 ◽  
Vol 9 (6) ◽  
pp. 823-830
Author(s):  
T. Krishnasree ◽  
Pavani Peddi

A unique way, green, cost-effective, and direct fabrication method is proposed for the synthesis of Nickel Oxide Nanoparticles (NPs) in an eco-environmentally way through leaf extract of Suaeda maritima (L.) Dumort. The nickel oxide nanoparticles were synthesized using Nickel (II) nitrate hexahydrate as a metal source and aqueous leaf extract of S. maritima was utilized as a green reducing agent. The formation of NPs was monitored by the change in color in the reaction mixture and the synthesized NPs were characterized using UV-visible spectrophotometer, Fourier Transform infrared (FT-IR) spectroscopy, field emission scanning electron microscope (FE SEM), X-ray diffractometer (XRD), and energy-dispersive X-ray spectroscopy (EDX). Further, the antibacterial activity of synthesized NPs was carried using the agar plate well diffusion method and antioxidant activity by DPPH free radical scavenging activity of the NPs was studied. The UV-visible absorption spectra of nanoparticles show a characteristic maximum absorption peak centered at 397 nm. The functional group analysis by FT-IR confirms the presence of various bio-active functional groups in the synthesized particles. The structural characterization confirms that the particles were Face Centred Cubic lattice structure having IR-regular in shape and rough surface with average atomic weight percentages of 76.3%. The synthesized nanoparticles were found to be potent against the growth of gram-positive (Bacillus subtilis, Staphylococcus aureus) and gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. In the DPPH assay, the IC 50 values of the synthesized NPs were found to be 28.01 μg/mL which is very close to standard ascorbic acid (22.19 μg/mL) whereas the IC 50 of the aqueous plant leaf extract was found to be 47.30 μg/m confirms that the nanoparticles having enhanced antioxidant activity. From the results of the study it can be concluded that this protocol is simple, rapid, one step, eco-friendly, non-toxic for the synthesis of nickel nanoparticles.


2020 ◽  
Vol 10 (4) ◽  
pp. 317-330
Author(s):  
N. González-Ballesteros ◽  
M. C. Rodríguez-Argüelles ◽  
M. Lastra-Valdor ◽  
G. González-Mediero ◽  
S. Rey-Cao ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 3076-3092

Increasing global fish production, increasing the amount of waste generated, unsafe disposal of waste tissues like head, bones, skin, scales, fins etc., into land and open water reservoirs leads to environmental pollution. The role of nanobiotechnology in biowaste management is an innovative strategy to handle environmental issues. This study synthesized silver and gold nanoparticles from prawn heads using one millimolar AgNO3 and HAuCl4. Biosynthesized nanoparticles were characterized by UV -Visible spectroscopy, XRD, FTIR, SEM and EDAX. The maximum absorption spectrum was monitored at 437 nm for silver and 552 for gold nanoparticles. Antimicrobial activity was assessed using the resazurin assay method. MIC values obtained for the tested organisms revealed antimicrobial activities. P aeruginosa, K. pneumoniae, showed MIC at 15.6 µg for silver nanoparticles, and A. niger, A.flavus and C.albicans showed MIC at 125 µg for gold nanoparticles synthesized from the prawn head extract. IC 50 values of α- amylase activity were found to be 296 and 356 µg/ml for the silver and gold nanoparticles, respectively. IC50 values are about 705 and 2475 µg/ml for the silver and gold nanoparticles, respectively, in α-glucosidase activity. Conclusively silver and gold nanoparticles synthesized from prawn head extract (PHE) showed antibacterial, antifungal, and antidiabetic activities.


2021 ◽  
Vol 13 (1) ◽  
pp. 21
Author(s):  
Bhavana Pradeep ◽  
Priyanka Hemba ◽  
Anusha Kunnathuli Jagadeesh ◽  
Chaitra Ganappa Ramakkanavar ◽  
Sneha Nayak ◽  
...  

2020 ◽  
Vol 17 (2) ◽  
pp. 88-100 ◽  
Author(s):  
Sundos Suleman Ismail Abdalla ◽  
Haliza Katas ◽  
Fazren Azmi ◽  
Mohd Fauzi Mh Busra

Fast progress in nanoscience and nanotechnology has contributed to the way in which people diagnose, combat, and overcome various diseases differently from the conventional methods. Metal nanoparticles, mainly silver and gold nanoparticles (AgNPs and AuNPs, respectively), are currently developed for many applications in the medical and pharmaceutical area including as antibacterial, antibiofilm as well as anti-leshmanial agents, drug delivery systems, diagnostics tools, as well as being included in personal care products and cosmetics. In this review, the preparation of AgNPs and AuNPs using different methods is discussed, particularly the green or bio- synthesis method as well as common methods used for their physical and chemical characterization. In addition, the mechanisms of the antimicrobial and anti-biofilm activity of AgNPs and AuNPs are discussed, along with the toxicity of both nanoparticles. The review will provide insight into the potential of biosynthesized AgNPs and AuNPs as antimicrobial nanomaterial agents for future use.


Sign in / Sign up

Export Citation Format

Share Document