scholarly journals Dipinaconborate additives in solutions for washing parts of automotive vehicles

Author(s):  
I.V. Fadeev ◽  
◽  
I.A. Uspensky ◽  
D.A. Pestryaev ◽  
Sh.V. Sadetdinov ◽  
...  

It is shown that the addition of 3 % wt. lithium, sodium and potassium dipinaconborates to a 5% Temp-100A solution achiev es the highest v alues of the degree of purification and the lowest values of the contact angle of wetting of the metal surface. The 20 steel corrosion rate decreases to 8⋅10-3 g / (m2∙h) and 4⋅10-3 g / (m2∙h) respectively after 24 h and 120 h of testing. The corrosion rate is 32⋅10-3 g / (m2∙h) and 24⋅10-3 g / (m2∙h) respectively in a 5% solution Temp-100A without additives.

2021 ◽  
Vol 13 (6) ◽  
pp. 3444
Author(s):  
Zheng Li ◽  
Hao Jin ◽  
Shuo Yu

Segment reinforcement corrosion can cause bearing-capacity degradation of shield tunnel, which is unsafe for the metro operation. Therefore, a three-dimensional computational model was proposed in this paper to study the corrosion rate and rust expansion form of segment reinforcement by the combined action of soil loading, chloride ion and stray current. The results show that the arch waist segment steel corrosion rate in the middle is larger than the ends. The rust expansion form of segment reinforcement appears be an eccentric circle. The radius size and circular center are related to the non-uniform corrosion coefficient and the maximum corrosion current density.


2010 ◽  
Vol 36 ◽  
pp. 176-181
Author(s):  
Xian Feng He ◽  
Shou Gang Zhao ◽  
Yuan Bao Leng

The corrosion of steel will have a bad impact on the safety of reinforced concrete structure. In severe cases, it may even be disastrous. In order to understand the impact of steel corrosion on the structure, tests are carried out to study corrosion and expansion rules of steel bars as well as the impact rules of corrosion on bond force between steel and concrete. The results show that wet and salty environment will result in steel corrosion; relatively minor corrosion will not cause expansion cracks of protection layers; when steel rust to a certain extent, it will cause cracks along the protection layer; when there exists minor corrosion in steel and the protection layer does not have expansion cracks, the bond force is still large and rapidly decreases as the corrosion rate increases.


1988 ◽  
Vol 135 (6) ◽  
pp. 1333-1337 ◽  
Author(s):  
John N. Murray ◽  
Patrick J. Moran

2011 ◽  
Vol 255-260 ◽  
pp. 514-518
Author(s):  
Zheng Yi Kong ◽  
Shan Hua Xu ◽  
Yu Sheng Chen

Because of the complexity of corrosion, the law of uniform corrosion and localized corrosion is still not clear,so it is difficult to assess their impact on the structure safety. In order to differ them and find their own law, we obtain a lot of corrosion specimens by ways of constant temperature and humidity, and then detect the size of corrosion pits by roughness tester. After that, the method for calculating the thickness of uniform corrosion and localized corrosion is proposed. Then the method is used to analyze the experiment data. The result indicates the thickness of uniform corrosion and localized corrosion all increase with the rate of corrosion, and they all show a power relationship with corrosion rate, so it will provide a basis for distinguishing them in safety assessment.


2021 ◽  
Author(s):  
Jean Vicente Ferrari

Abstract Generally, in water injection systems, oxygen levels starting from around eight ppm are deoxygenated to below 50 ppm, following international standards' guidelines. This work aims to discuss the impact of such a magnitude value of oxygen contamination on steel corrosion in seawater injection systems by analysing theoretical polarisation curves and results from published works with different approaches. Corrosion models consider mass-transfer controlled diffusion of oxygen to predict the maximum steel corrosion rate, which depends on the oxygen limiting current, which in turn is strongly influenced by flow velocity. The effect of free chlorine on corrosion in seawater injection systems has also been considered and included in an oxygen equivalent parameter. In such systems, where oxygen reduction is the key cathodic reaction, the corrosion process may be under cathodic activation control, independent of flow at higher velocities or when erosion-corrosion begins. In this work, theoretical polarisation curves were constructed by using published oxygen and chlorine cathodic limiting currents (iLc) on carbon steel and a noble metal electrode, respectively. Aerated (200 ppb and 9000 ppb of oxygen) and deaerated conditions (50 ppb of oxygen) and the presence of 300 ppb of chlorine were applied to the assumed exchange current densities (io). Neutral (pH 7) and acid (pH 4) conditions (considering the presence of CO2) were also assumed to be at room temperature and pressure. Since the corrosion rate in lower oxygen concentrations (ppb order of magnitude) may result in corrosion rates of the same order of magnitude than in higher oxygen concentrations (ppm order of magnitude) when comparing and analysing results from experimental, semi-empirical or mechanistic approaches, it is necessary to weigh up the effects of both steel surface (bare or scaled/corrosion products) and flow. At oxygen concentrations below 200 ppb and under acid conditions, the contribution of H+ reduction on corrosion rate starts to be higher than oxygen reduction, mainly in the absence of chlorine.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012079
Author(s):  
S B Gjertsen ◽  
A Palencsar ◽  
M Seiersten ◽  
T H Hemmingsen

Abstract Models for predicting top-of-line corrosion (TLC) rates on carbon steels are important tools for cost-effectively designing and operating natural gas transportation pipelines. The work presented in this paper is aimed to investigate how the corrosion rates on carbon steel is affected by acids typically present in the transported pipeline fluids. This investigation may contribute to the development of improved models. In a series of experiments, the corrosion rate differences for pure CO2 (carbonic acid) corrosion and pure organic acid corrosion (acetic acid and formic acid) on X65 carbon steel were investigated at starting pH values; 4.5, 5.3, or 6.3. The experiments were conducted in deaerated low-salinity aqueous solutions at atmospheric pressure and temperature of 65 °C. The corrosion rates were evaluated from linear polarization resistance data as well as mass loss and released iron concentration. A correlation between lower pH values and increased corrosion rates was found for the organic acid experiments. However, the pH was not the most critical factor for the rates of carbon steel corrosion in these experiments. The experimental results showed that the type of acid species involved and the concentration of the undissociated acid in the solution influenced the corrosion rates considerably.


Author(s):  
Simeon C. Nwanonenyi ◽  
Okoro Ogbobe ◽  
Emeka Emmanuel Oguzie

The corrosion of mild steel in 0.5 M H2SO4acid solution and the inhibition process by wheat starch (WS) was investigated using weight loss and potentiodynamic polarization measurement techniques respectively. Gravimetric results revealed that there is significant reduction in the corrosion rate of mild steel in the presence of inhibited solution compared to blank solution, and also the inhibition efficiency was found to depend on the concentration of the WS. Data on potentiodynamic polarization results confirmed that WS exhibited mixed type inhibition behaviour, though the cathodic effect was more pronounced. The mode of WS adsorption on the corroding metal surface followed Langmuir isotherm model. In addition, the trend of inhibition efficiency with temperature, activation energy and heat of adsorption parameters revealed a strong interaction between the WS constituents and the corroding metal surface, thus indicating that WS lowered the corrosion process by blanketing the mild steel surface through chemical adsorption mechanism. The mechanism of inhibition was discussed in the light of the chemical structure of starch.


2018 ◽  
Vol 25 (1) ◽  
pp. 77
Author(s):  
G. A. Teptereva ◽  
S. Yu. Shavshukova ◽  
V. G. Konesev ◽  
I. I. Sultanov ◽  
R. R. Rakhimov ◽  
...  

2021 ◽  
Vol 285 ◽  
pp. 07012
Author(s):  
Andrey Bodrov ◽  
Anton Panichkin ◽  
Denis Lomakin ◽  
Andrew Simushkin

The article presents the results of studies to determine the dependence of the degree of adhesion and the separation force of the powder coatings layer on the roughness parameter of the substrate, as well as the contact angle of wetting for various methods of preparing the painted surface by chemical methods. In addition, practical tests for stain resistance were carried out, which showed the absence of corrosion damage, as well as a slight change in color, gloss of coatings, chalking and dirt retention on the studied coating samples.


Sign in / Sign up

Export Citation Format

Share Document