separation force
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 25)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
pp. 442
Author(s):  
Dmitry Gritsenko ◽  
Roberto Paoli ◽  
Jie Xu

Constrained-surface-based stereolithography has recently attracted much attention from both academic and industrial communities. Despite numerous experimental, numerical and theoretical efforts, the fundamental need to reduce the separation force between the newly cured part and constrained surface has not yet been completely solved. In this paper, we develop a fluid dynamics approach, proposed in our previous work, to theoretically model the separation force in 3D printing of a cylindrical part for flat and patterned windows. We demonstrate the possibility of separation force reduction with an accelerated movement of the printing platform. In particular, we investigate behaviors of transient parameter, its reduction rate, and separation force reduction with respect to elevation speed and time. The proposed approach involves deceleration and acceleration stages and allows to achieve the force reduction for the entire printing process. Finally, we provide implicit analytical solutions for time moments when switching between the stages can be done without noticeable increase of separation force and explicit expression for separation force in case of patterned window.


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 815
Author(s):  
Huaibei Xie ◽  
Deyi Kong ◽  
Jianhua Shan ◽  
Feng Xu

Detachment of fruit from the plants with separation force is important in robotic harvesting. Compared with twisting pattern and bending pattern, the pulling pattern for cherry tomato harvesting is more simple, more flexible, and easier to implement in robotic harvesting. It was found that the detachment force is closely related to the location of the fruit separation. However, in the pulling pattern, analysis of the effect of harvesting parameters of cherry tomatoes at the calyx/fruit joint has still not been carried out in depth. In this paper, the goal of this research was to investigate the effect of different harvesting parameters on the minimal detachment force of cherry tomatoes at the calyx/fruit joint. Experiments were designed according to response surface methodology Box–Behnken design by maintaining three levels of three process parameters—grasping angle, horizontal angle, and pitching angle. Results showed that the pitching angle is the most important parameter, and the grasping angle has little effect on the detachment force, and the detachment force was found within the range of 0.58 N to 2.46 N. Results also revealed that the minimum separation force of the cherry tomato harvesting at the calyx/fruit joint was obtained by the optimum conditions of the grasping angle of 68°, the horizontal angle of 135° and the pitching angle of 0°. Moreover, desirability function has also been used to optimize the angle parameters. The confirmation experiments validate the reliability and capability of the developed model.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253840
Author(s):  
Cristina Vercelli ◽  
Massimiliano Tursi ◽  
Silvia Miretti ◽  
Gessica Giusto ◽  
Marco Gandini ◽  
...  

Laminitis is one of the most devastating diseases in equine medicine, and although several etiopathogenetic mechanisms have been proposed, few clear answers have been identified to date. Several lines of evidence point towards its underlying pathology as being metabolism-related. In the carbonyl stress pathway, sugars are converted to methylglyoxal (MG)—a highly reactive α-oxoaldehyde, mainly derived during glycolysis in eukaryotic cells from the triose phosphates: D-glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. One common hypothesis is that MG could be synthesized during the digestive process in horses, and excessive levels absorbed into peripheral blood could be delivered to the foot and lead to alterations in the hoof lamellar structure. In the present study, employing an ex vivo experimental design, different concentrations of MG were applied to hoof explants (HE), which were then incubated and maintained in a specific medium for 24 and 48 h. Macroscopic and histological analyses and a separation force test were performed at 24 and 48 h post-MG application. Gene expression levels of matrix metalloproteinase (MMP)-2 and -14 and tissue inhibitor of metalloproteinase (TIMP)-2 were also measured at each time point for all experimental conditions. High concentrations of MG induced macroscopic and histological changes mimicking laminitis. The separation force test revealed that hoof tissue samples incubated for 24 h in a high concentration of MG, or with lower doses but for a longer period (48 h), demonstrated significant weaknesses, and samples were easily separated. All results support that high levels of MG could induce irreversible damage in HEs, mimicking laminitis in an ex vivo model.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2058
Author(s):  
Nicole Reisinger ◽  
Dominik Wendner ◽  
Nora Schauerhuber ◽  
Elisabeth Mayer

Endotoxins play a crucial role in ruminant health due to their deleterious effects on animal health. The study aimed to evaluate whether LPS and LTA can induce an inflammatory response in rumen epithelial cells. For this purpose, epithelial cells isolated from rumen tissue (RECs) were stimulated with LPS and LTA for 1, 2, 4, and 24 h. Thereafter, the expression of selected genes of the LPS and LTA pathway and inflammatory response were evaluated. Furthermore, it was assessed whether LPS affects inflammatory response and structural integrity of claw explants. Therefore, claw explants were incubated with LPS for 4 h to assess the expression of selected genes and for 24 h to evaluate tissue integrity via separation force. LPS strongly affected the expression of genes related to inflammation (NFkB, TNF-α, IL1B, IL6, CXCL8, MMP9) in RECs. LTA induced a delayed and weaker inflammatory response than LPS. In claw explants, LPS affected tissue integrity, as there was a concentration-dependent decrease of separation force. Incubation time had a strong effect on inflammatory genes in claw explants. Our data suggest that endotoxins can induce a local inflammatory response in the rumen epithelium. Furthermore, translocation of LPS might negatively impact claw health.


2021 ◽  
pp. 875608792110296
Author(s):  
Fateh Ali ◽  
Yanren Hou ◽  
Muhammad Zahid ◽  
MA Rana ◽  
Muhammad Usman

The purpose of this article is to provide a mathematical model of magnetohydrodynamic (MHD) non-isothermal flow of an incompressible Jeffrey fluid as it goes through a minimal gap between the two counter rotating rolls. The dimensionless forms of governing equations are obtained by using appropriate dimensionless parameters. The LAT (lubrication approximation theory) is utilized to simplify the dimensionless form of governing equations. Analytical solutions for the velocity, pressure gradient, flow rate, Nusselt number and temperature distribution are presented. How the Jeffrey parameters, MHD and velocities ratio influence on the flow patterns and heat transfer rate are explored. Outcomes of some significant engineering quantities such as flow rate, power input, pressure distribution and roll separation force are obtained numerically in tabular form and some are displayed graphically. We found that the MHD parameter served as a controlling parameter for different engineering quantities like velocity, temperature, flow rate, and coating thickness. Moreover, the coating thickness on the web decreases by increasing the values of velocities ratio.


2021 ◽  
Vol 2 (3) ◽  
pp. 230-238
Author(s):  
Sergey A. Kondratyev ◽  
Ksenia A. Kovalenko

It is noted that medium-sized particles have the highest flotation rate. Grains of the boundary classes of the size range have a reduced floatability, and they account for more than 50% of all losses of extracted minerals during flotation. The stability conditions of the particle - bubble flotation unit in the chamber of the foam flotation machine are considered. The effect of perturbations of the bubble surface on the size of the floated particles is studied. The amplitude of the initial deformation of the surface and the amplitude of the initial deformation rate of the bubble surface were determined depending on the energy of the turbulent pulsations of the environmental liquid. It is established that the rate of energy dissipation in the chamber of the flotation machine has a moderate effect on the size of the extracted grains. The influence of the surface properties of mineral particles and their mass on the upper value of the particle size range is studied. It is shown that the hydrophobicity of the surface has a significant effect on the size of the mineral particles that remain in contact with the gas phase. The main parameter that characterizes the effect of the hydrophobicity of the surface of the floated particles on the value of the separation force can be the value of the advancing contact angle.


Separations ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 36
Author(s):  
Jie Shan ◽  
Xiaojun Zhou

The movement of the gas–liquid interface caused by the movement of the bubble position will have an impact on the starting conditions for particle migration. This article quantifies the influence of moving bubbles on the starting conditions of particle migration in non-Newtonian fluids, and it aims to better understand the influence of bubbles moving in non-Newtonian fluids on particle migration to achieve more effective control. First, the forces and moments acting on the particles are analyzed; then, fluid dynamics, non-Newtonian fluid mechanics, extended DLVO (Derjaguin Landau Verwey Overbeek theory), surface tension, and friction are applied on the combined effects of particle migration. Then, we reasonably predict the influence of gas–liquid interface movement on particle migration in non-Newtonian fluids. The theoretical results show that the movement of the gas–liquid interface in non-Newtonian fluids will increase the separation force acting on the particles, which will lead to particle migration. Second, we carry out the particle migration experiment of moving bubbles in non-Newtonian fluid. Experiments show that when the solid–liquid two-phase flow is originally stable, particle migration occurs after the bubble movement is added. This phenomenon shows that the non-Newtonian fluid with bubble motion has stronger particle migration ability. Although there are some errors, the experimental results basically support the theoretical data.


2021 ◽  
Vol 285 ◽  
pp. 07012
Author(s):  
Andrey Bodrov ◽  
Anton Panichkin ◽  
Denis Lomakin ◽  
Andrew Simushkin

The article presents the results of studies to determine the dependence of the degree of adhesion and the separation force of the powder coatings layer on the roughness parameter of the substrate, as well as the contact angle of wetting for various methods of preparing the painted surface by chemical methods. In addition, practical tests for stain resistance were carried out, which showed the absence of corrosion damage, as well as a slight change in color, gloss of coatings, chalking and dirt retention on the studied coating samples.


Sign in / Sign up

Export Citation Format

Share Document