scholarly journals Comparison of Immunogenicity and Protective Efficacy of the Intranasal and Intraperitoneal Immunization Routes of Escherichia albertii Strain DM104 in Mouse Model

2020 ◽  
Vol 37 (2) ◽  
pp. 38-41
Author(s):  
Fatema Moni Chowdhury ◽  
Nils Kare Birkeland ◽  
Chowdhury Rafiqul Ahsan

In recent years, our group isolated the Escherichia albertii strain DM104 and characterized it as a vaccine strain against Shigella dysenteriae type 4 in the guinea pig eye model. Protective efficacy of different routes of immunization such as intranasal, oral, and intrarectal routes were also determined and compared by challenging immunized guinea pigs against live S. dysenteriae. In the current study, we compared the intranasal and intraperitoneal routes of immunizations with the DM104 vaccine strain in mice to understand the better route of administration of the DM104 vaccine and its immunogenicity as well as protective efficacy in mouse model. The results indicate that the immune response elicited by the DM104 strain is strongly dependent on the immunization route, with the intranasal route being more effective than the intraperitoneal route following intraperitoneal live S. dysenteriae challenge. Intranasal immunization yielded 80% protective efficacy in immunized mice whereas, intraperitoneal immunization could not provide any protection. Protection generated by intranasal immunization was accompanied by high titre of anti-whole cell lysate IgG and IgA in DM104 immunized sera compared to sera collected from mice of control group. All these data demonstrate the intranasal route of the vaccine DM104 strain in mouse model to be a better immunization route to protect the animals against live S. dysenteriae challenge. Bangladesh J Microbiol, Volume 37 Number 2 December 2020, pp 38-41

2010 ◽  
Vol 59 (4) ◽  
pp. 429-437 ◽  
Author(s):  
Shruti Bansal ◽  
Sanjay Chhibber

Acute lung injuries due to acute lung infections remain a major cause ofmortality. Thus a combination of an antibiotic and a compound with immunomodulatoryand anti-inflammatory activities can help to overcome acute lung infection-inducedinjuries. Curcumin derived from the rhizome of turmeric has been used fordecades and it exhibits anti-inflammatory, anti-carcinogenic, immunomodulatoryproperties by downregulation of various inflammatory mediators. Keeping theseproperties in mind, we investigated the anti-inflammatory properties of curcuminin a mouse model of acute inflammation by introducing Klebsiella pneumoniae B5055 into BALB/c mice via the intranasal route. Intranasal instillationof bacteria in this mouse model of acute pneumonia-induced inflammation resultedin a significant increase in neutrophil infiltration in the lungs along withincreased production of various inflammatory mediators [i.e. malondialdehyde (MDA),myeloperoxidase (MPO), nitric oxide (NO), tumour necrosisfactor (TNF)-α] in the lung tissue. The animalsthat received curcumin alone orally or in combination with augmentin, 15 daysprior to bacterial instillation into the lungs via the intranasal route, showeda significant (P <0.05) decrease in neutrophil influxinto the lungs and a significant (P <0.05) decreasein the production of MDA, NO, MPO activity and TNF-α levels.Augmentin treatment alone did not decrease the MDA, MPO, NO and TNF-α levels significantly (P >0.05) as compared tothe control group. We therefore conclude that curcumin ameliorates lung inflammationinduced by K. pneumoniae B5055 without significantly (P <0.05) decreasing the bacterial load in the lung tissue whereasaugmentin takes care of bacterial proliferation. Hence, curcumin can be usedas an adjunct therapy along with antibiotics as an anti-inflammatory or animmunomodulatory agent in the case of acute lung infection.


Author(s):  
Fatema Moni Chowdhury ◽  
Chowdhury Rafiqul Ahsan ◽  
Nils-Kåre Birkeland

AbstractThe recent rise of antibiotic resistance and lack of an effective vaccine make the scenario of shigellosis alarming in developing countries like Bangladesh. In recent years, our group reported the vaccine efficacy of a non-pathogenic Escherichia albertii strain DM104 in different animal models, where an ocularly administered vaccine in the guinea pig eye model against Shigella dysenteriae type 4 challenge showed high protective efficacy and also induced a high titer of serum IgG against S. dysenteriae type 4 whole cell lysate (WCL) and LPS. In this study, we report further evaluation of the non-invasive and non-toxic environmental strain DM104 as a vaccine candidate against S. dysenteriae type 4 in mice model. Oral immunization of live DM104 bacterial strain demonstrated better protective immunity in mice model by showing 90% protection in mice against live S. dysenteriae type 4 lethal dose challenge and by inducing effective humoral and mucosal immune responses.


2002 ◽  
Vol 70 (6) ◽  
pp. 2950-2958 ◽  
Author(s):  
Malabi M. Venkatesan ◽  
Antoinette B. Hartman ◽  
John W. Newland ◽  
Vessela S. Ivanova ◽  
Thomas L. Hale ◽  
...  

ABSTRACT WRSd1 is a Shigella dysenteriae 1 vaccine containing deletions of the virG(icsA) gene required for intercellular spreading and a 20-kb chromosomal region encompassing the Shiga toxin genes (stxAB). WRSd1 was constructed from S. dysenteriae 1 strain 1617 that was originally isolated during the 1968 to 1969 epidemic of Shiga dysentery in Guatemala. The virG(icsA) deletion was constructed from a streptomycin-resistant (Strr) mutant of 1617 by a filter mating procedures using a virG(icsA) deletion derivative, pΔvirG2. A colony that was invasive for HeLa cells and negative for the virG(icsA) gene by Southern blotting was grown anaerobically on plates containing chlorate for selection of resistant colonies that had lost the entire Shiga toxin gene. A virG(icsA) stxAB Strr mutant selected from the chlorate plates was designated WRSd1. This candidate vaccine was evaluated for safety, immunogenicity, and protective efficacy using the guinea pig keratoconjunctivitis model. WRSd1 was Sereny negative, and two applications of this strain to the cornea elicited a significant protective immune response against the S. dysenteriae 1 O antigen. Vaccination with WRSd1 conferred protection against challenge with each of three virulent S. dysenteriae 1 strains. Since a vaccine protecting against multiple Shigella species is required for most areas where Shigella is endemic, protection studies using a combination vaccine of Shigella sonnei vaccine strain WRSS1, Shigella flexneri 2a vaccine strain SC602, and WRSd1 were also performed. Guinea pigs vaccinated with a mixture of equal amounts of the three vaccine strains were protected against challenge with each of the homologous virulent strains. Unlike WRSS1 and SC602, however, the level of protection afforded by WRSd1 in a combination vaccine was lower than the protection elicited by a pure culture. A current Good Manufacturing Practice product of WRSd1 given intragastrically to rhesus monkeys proved safe and immunogenic.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ashwani Kesarwani ◽  
Parul Sahu ◽  
Kshama Jain ◽  
Prakriti Sinha ◽  
K. Varsha Mohan ◽  
...  

AbstractDue to the limited utility of Bacillus Calmette–Guérin (BCG), the only approved vaccine available for tuberculosis, there is a need to develop a more effective and safe vaccine. We evaluated the safety and efficacy of a dry powder aerosol (DPA) formulation of BCG encapsulated alginate particle (BEAP) and the conventional intradermal BCG immunization in infant rhesus macaques (Macaca mulatta). The infant macaques were immunized intratracheally with DPA of BEAP into the lungs. Animals were monitored for their growth, behaviour, any adverse and allergic response. The protective efficacy of BEAP was estimated by the ex-vivo H37Rv infection method. Post-immunization with BEAP, granulocytes count, weight gain, chest radiography, levels of liver secreted enzymes, cytokines associated with inflammation like TNF and IL-6 established that BEAP is non-toxic and it does not elicit an allergic response. The T cells isolated from BEAP immunized animals’ blood, upon stimulation with M.tb antigen, secreted high levels of IFN-γ, TNF, IL-6 and IL-2. The activated T cells from BEAP group, when co-cultured with M.tb infected macrophages, eliminated largest number of infected macrophages compared to the BCG and control group. This study suggests the safety and efficacy of BEAP in Non-human primate model.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 302
Author(s):  
Ahtesham Hussain ◽  
Jin Sook Cho ◽  
Jong-Seok Kim ◽  
Young Ik Lee

Background: Currently, obesity is a global health challenge due to its increasing prevalence and associated health risk. It is associated with various metabolic diseases, including diabetes, hypertension, cardiovascular disease, stroke, certain forms of cancer, and non-alcoholic liver diseases (NAFLD). Objective: The aim of this study to evaluate the effects of polyphenol enriched herbal complex (Rubus crataegifolius/ellagic acid, Crataegus pinnatifida Bunge/vitexin, chlorogenic acid, Cinnamomum cassiaa/cinnamic acid) on obesity and obesity induced NAFLD in the high-fat diet (HFD)-induced obese mouse model. Methods: Obesity was induced in male C57BL/6 mice using HFD. After 8 weeks, the mice were treated with HFD+ plants extract for 8 weeks. Body weight, food intake weekly, and blood sugar level were measured. After sacrifice, changes in the treated group’s liver weight, fat weight, serum biochemical parameters, hormone levels, and enzyme levels were measured. For histological analysis, tissues were stained with hematoxylin-eosin (H&E) and Oil Red-O. Results: Our results showed that the herbal complex ameliorated body weight and liver weight gain, and decreased total body fat in HFD-fed animals. Post prandial blood glucose (PBG) and fasting blood glucose (FBG) were lower in the herbal complex-treated group than in the HFD control group. Additionally, herbal formulation treatment significantly increased HDL levels in serum and decreased TC, TG, AST, ALT, deposition of fat droplets in the liver, and intima media thickness (IMT) in the aorta. Herbal complex increased serum adiponectin and decreased serum leptin. Herbal complex also increased carnitine palmityl transferase (CPT) activity and significantly decreased enzyme activity of beta-hydroxy beta methyl glutamyl-CoA (HMG-CoA) reductase, and fatty acid synthase (FAS). Conclusions: The results of this study demonstrated that the herbal complex is an effective herbal formulation in the attenuation of obesity and obesity-induced metabolic dysfunction including NAFLD in HFD-induced mouse model.


2020 ◽  
pp. 1-14
Author(s):  
Yaser H.A. Elewa ◽  
Osamu Ichii ◽  
Teppei Nakamura ◽  
Yasuhiro Kon

Diabetes is a devastating global health problem and is considered a predisposing factor for lung injury progression. Furthermore, previous reports of the authors revealed the role of mediastinal fat-associated lymphoid clusters (MFALCs) in advancing respiratory diseases. However, no reports concerning the role of MFALCs on the development of lung injury in diabetes have been published. Therefore, this study aimed to examine the correlations between diabetes and the development of MFALCs and the progression of lung injury in a streptozotocin-induced diabetic mouse model. Furthermore, immunohistochemical analysis for immune cells (CD3+ T-lymphocytes, B220+ B-lymphocytes, Iba1+ macrophages, and Gr1+ granulocytes), vessels markers (CD31+ endothelial cells and LYVE-1+ lymphatic vessels “LVs”), and inflammatory markers (TNF-α and IL-5) was performed. In comparison to the control group, the diabetic group showed lung injury development with a significant increase in MFALC size, immune cells, LVs, and inflammatory marker, and a considerable decrease of CD31+ endothelial cells in both lung and MFALCs was observed. Furthermore, the blood glucose level showed significant positive correlations with MFALCs size, lung injury, immune cells, inflammatory markers, and LYVE-1+ LVs in lungs and MFALCs. Thus, we suggest that the development of MFALCs and LVs could contribute to lung injury progression in diabetic conditions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mandi Liu ◽  
Yue Zhang ◽  
Di Zhang ◽  
Yun Bai ◽  
Guomei Liu ◽  
...  

AbstractEnterotoxigenic Escherichia coli (ETEC), an essential cause of post-weaning diarrhea (PWD) in piglets, leads to significant economic losses to the pig industry. The present study aims to identify the role of ETEC total RNA in eliciting immune responses to protect animals against ETEC infection. The results showed that the total RNA isolated from pig-derived ETEC K88ac strain effectively stimulated the IL-1β secretion of porcine intestinal epithelial cells (IPEC-J2). The mouse model immunized with ETEC total RNA via intramuscular injection (IM) or oral route (OR) was used to evaluate the protective efficiency of the ETEC total RNA. The results suggested that 70 μg ETEC total RNA administered by either route significantly promoted the production of the serum IL-1β and K88ac specific immunoglobulins (IgG, IgM, and IgA). Besides, the ETEC RNA administration augmented strong mucosal immunity by elevating K88ac specific IgA level in the intestinal fluid. Intramuscularly administered RNA induced a Th1/Th2 shift toward a Th2 response, while the orally administered RNA did not. The ETEC total RNA efficiently protected the animals against the ETEC challenge either by itself or as an adjuvant. The histology characterization of the small intestines also suggested the ETEC RNA administration protected the small intestinal structure against the ETEC infection. Particularly of note was that the immunity level and protective efficacy caused by ETEC RNA were dose-dependent. These findings will help understand the role of bacterial RNA in eliciting immune responses, and benefit the development of RNA-based vaccines or adjuvants.


Antioxidants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Soyon Yoon ◽  
Seokcheon Song ◽  
Jae Woo Shin ◽  
Sini Kang ◽  
Hye Young Kim ◽  
...  

The increasing prevalence of allergic asthma has become the world’s major health issue. Current treatments for allergic asthma focus on treating symptoms, while permanent cures still remain undiscovered. In this study, we investigated the effect of Korean traditional herbal remedy, Pyunkang-tang (PGT)—composed of six plants—on asthma alleviation in a mouse model. The PGT mixture was orally gavaged to mice (PM group, 20 mg/mouse/day) from 7 days before sensitization with ovalbumin (OVA) (day −7). On day 0 and day 14, mice from OVA-control (n = 9) and PM group (n = 8) were sensitized with OVA and alum through intraperitoneal injection. On days 18~20, OVA was challenged to mice through nasal injection and sacrificed next day. Cell profile in lung tissue was analyzed by flow cytometry and RT-qPCR analysis, and the number of eosinophils and expression of siglec-F were significantly reduced in the PM group. Lung tissue was examined with hematoxylin and eosin (H&E) and Alcian blue/periodic acid–Schiff (AB-PAS) staining. Noticeably reduced eosinophil infiltration around bronchioles was displayed in the PM group compared to the OVA-control group. Furthermore, PGT-treated mice showed a significant reduction in IL-13 and a mild reduction in IL-5 in lungs. A decreasing tendency of IL-5/13 (+) CD4+ T cells and IL-13(+) innate lymphoid cells (ILCs) and a significant reduction in IL5(+) ILCs were also observed. When treating PGT on murine lung epithelial cells stimulated by papain, there was a significant reduction in IL-33 mRNA expression levels. Taken together, oral delivery of PGT successfully alleviated asthmatic responses provoked by OVA in a mouse model and could lead to novel therapies for allergic asthma.


2021 ◽  
Vol 25 (2) ◽  
pp. 24-32
Author(s):  
Trinh Thach Thi Nguyen ◽  
Duy Tuan Nguyen ◽  
Thanh Ha Tuan Nguyen ◽  
Thi Huong Lan Do ◽  
Hoang Ngan Nguyen

Objective: Evaluation the hypoglycemic effect of Gydenphy capsules on Streptozotocin-induced type 1 diabetic in Swiss mouse model. Methods: The type 1 diabetic model was established by intraperitoneal injections of Streptozocin 150mg/kg in Swiss mouse. Then, the Gydenphy were orally administered daily at a dose of 576 mg/kg/day or 1152 mg/kg/day in 10 days. Blood glucose concentration in the Gydenphy oral groups with that of water control group and the intraperitoneal insulin injection group was compared. Results: Blood glucose concentration in the groups using Gydenphy (dose576 mg/kg/24h and dose 1152 mg/kg/24h) significal decreased compared to the distilled water group at (p <0.05 at the time of 4 hours, 8 hours; p <0.01 at the time of 3, 10 days). The hypoglycemic effect of Gydenphy at 576mg/kg/day and 1152 mg/kg/day at 4 hours, 8 hours and 3 days were inferior to insulin 0.1 UI/kg/day for glycemic control. However, the hypoglycemic effect ofGydenphy were equivalent to insulin after 10 consecutive days on treatment. Conclusion: Gydenphy capsules have hypoglycemic effects onStreptozotocin-induced type 1 diabetes in Swiss mouse model.


2018 ◽  
Vol 51 (5) ◽  
pp. 2341-2358 ◽  
Author(s):  
Xiaowei Nie ◽  
Youjin Dai ◽  
Yuan Zheng ◽  
Dan Bao ◽  
Qin Chen ◽  
...  

Background/Aims: This study investigated the effect of consecutive superovulation on the ovaries and established a premature ovarian failure (POF) model in mice. Methods: The mouse POF model was induced by 5-15 consecutive superovulation treatments with pregnant mare serum gonadotropin (PMSG), human chorionic gonadotropin (HCG) and prostaglandin F2α (PGF2α). Normal adult mice were compared with mice displaying natural ovarian aging. The following serum biochemical parameters were measured: including follicle-stimulating hormone (FSH), luteinizing hormone (LH), progesterone (P), estradiol (E2), inhibin B (INH B), malondialdehyde (MDA), total superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels. Follicles were counted using H&E staining. Levels of 8-hydroxyguanosine (8-OhdG), 4-hydroxynonenal (4-HNE), nitrotyrosine (NTY), anti-Mullerian hormone (AMH) and CDKN2A/ p16 (p16) were detected using immunohistochemical staining. Reactive oxygen species (ROS) levels were measured using dihydroethidium (DHE) staining. Cell apoptosis was detected using an in situ TUNEL fluorescence staining assay. Levels of proteins involved in ROS-related pathways and the p16 protein were detected using Western blotting. Sod1, Sod2 and Sod3 mRNA levels were detected using quantitative polymerase chain reaction (Q-PCR). Oocyte quality was evaluated using in vitro fertilization (IVF) and zygote culture. Results: Consecutive superovulation groups presented lower P, E2, SOD, GSH-Px and INH B levels, significantly higher FSH, LH, MDA and ROS levels, and significantly fewer primordial follicles compared with the control group. Consecutive superovulation groups presented significantly increased levels of Sod2, 8-OhdG, 4-HNE, NTY, significantly increased levels of the SIRT1 and FOXO1 proteins, significantly increased levels of the senescence-associated protein p16, as well as decreased AMH, Sod1 and Sod3 levels and increased granulosa cell apoptosis compared with the control group. Conclusion: Consecutive superovulation significantly decreased ovarian function and oocyte quality and increased oxidative stress and apoptosis in the ovary via a mechanism involving the p16 and SIRT1/FOXO1 signaling pathways. These findings suggest that consecutive superovulation may be used to establish a mouse model of ovarian aging.


Sign in / Sign up

Export Citation Format

Share Document