scholarly journals Establishment of a new nuclear medicine facility: fundamental structure and their shielding

2020 ◽  
Vol 26 (2) ◽  
pp. 41-49
Author(s):  
A Rahman ◽  
ATMM Rabbani ◽  
TA Biman ◽  
MM Haider ◽  
NI Khan ◽  
...  

This work was an attempt to propose a model to set up for newly establishment of Nuclear Medicine facility. Medical physicist should establish a major guideline to set up a model of a new nuclear medicine facility; draw the fundamental structure and calculate the corresponding shielding. The various layouts such as the diagnostic (In-Vivo and In-Vitro) and therapeutic layouts of fundamental structure were been made on the primacies as controlled, supervised and non-supervised area according to radiation exposure rate. Some shielding calculations of various facilities such as the diagnostic and therapeutic facility have to provide on instrumentation and radiation safety with the required layout according to maximum activity of radionuclide into the controlled area. Bangladesh Journal of Physics, 26(2), 41-49, December 2019

2001 ◽  
Vol 40 (03) ◽  
pp. 59-70 ◽  
Author(s):  
W. Becker ◽  
J. Meiler

SummaryFever of unknown origin (FUO) in immunocompetent and non neutropenic patients is defined as recurrent fever of 38,3° C or greater, lasting 2-3 weeks or longer, and undiagnosed after 1 week of appropriate evaluation. The underlying diseases of FUO are numerous and infection accounts for only 20-40% of them. The majority of FUO-patients have autoimmunity and collagen vascular disease and neoplasm, which are responsible for about 50-60% of all cases. In this respect FOU in its classical definition is clearly separated from postoperative and neutropenic fever where inflammation and infection are more common. Although methods that use in-vitro or in-vivo labeled white blood cells (WBCs) have a high diagnostic accuracy in the detection and exclusion of granulocytic pathology, they are only of limited value in FUO-patients in establishing the final diagnosis due to the low prevalence of purulent processes in this collective. WBCs are more suited in evaluation of the focus in occult sepsis. Ga-67 citrate is the only commercially available gamma emitter which images acute, chronic, granulomatous and autoimmune inflammation and also various malignant diseases. Therefore Ga-67 citrate is currently considered to be the tracer of choice in the diagnostic work-up of FUO. The number of Ga-67-scans contributing to the final diagnosis was found to be higher outside Germany than it has been reported for labeled WBCs. F-l 8-2’-deoxy-2-fluoro-D-glucose (FDG) has been used extensively for tumor imaging with PET. Inflammatory processes accumulate the tracer by similar mechanisms. First results of FDG imaging demonstrated, that FDG may be superior to other nuclear medicine imaging modalities which may be explained by the preferable tracer kinetics of the small F-l 8-FDG molecule and by a better spatial resolution of coincidence imaging in comparison to a conventional gamma camera.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


2021 ◽  
Vol 7 (3) ◽  
pp. eabc4897
Author(s):  
Catríona M. Dowling ◽  
Kate E. R. Hollinshead ◽  
Alessandra Di Grande ◽  
Justin Pritchard ◽  
Hua Zhang ◽  
...  

Triple-negative breast cancer (TNBC) is a subtype of breast cancer without a targeted form of therapy. Unfortunately, up to 70% of patients with TNBC develop resistance to treatment. A known contributor to chemoresistance is dysfunctional mitochondrial apoptosis signaling. We set up a phenotypic small-molecule screen to reveal vulnerabilities in TNBC cells that were independent of mitochondrial apoptosis. Using a functional genetic approach, we identified that a “hit” compound, BAS-2, had a potentially similar mechanism of action to histone deacetylase inhibitors (HDAC). An in vitro HDAC inhibitor assay confirmed that the compound selectively inhibited HDAC6. Using state-of-the-art acetylome mass spectrometry, we identified glycolytic substrates of HDAC6 in TNBC cells. We confirmed that inhibition or knockout of HDAC6 reduced glycolytic metabolism both in vitro and in vivo. Through a series of unbiased screening approaches, we have identified a previously unidentified role for HDAC6 in regulating glycolytic metabolism.


1987 ◽  
Vol 7 (9) ◽  
pp. 3194-3198 ◽  
Author(s):  
D Solnick ◽  
S I Lee

We set up an alternative splicing system in vitro in which the relative amounts of two spliced RNAs, one containing and the other lacking a particular exon, were directly proportional to the length of an inverted repeat inserted into the flanking introns. We then used the system to measure the effect of intramolecular complementarity on alternative splicing in vivo. We found that an alternative splice was induced in vivo only when the introns contained more than approximately 50 nucleotides of perfect complementarity, that is, only when the secondary structure was much more stable than most if not all possible secondary structures in natural mRNA precursors. We showed further that intron insertions containing long complements to splice sites and a branch point inhibited splicing in vitro but not in vivo. These results raise the possibility that in cells most pre-mRNA secondary structures either are not maintained long enough to influence splicing choices, or never form at all.


2021 ◽  
Vol 12 ◽  
Author(s):  
Josanne S. de Maar ◽  
Charis Rousou ◽  
Benjamin van Elburg ◽  
Hendrik J. Vos ◽  
Guillaume P.R. Lajoinie ◽  
...  

Chemotherapy efficacy is often reduced by insufficient drug uptake in tumor cells. The combination of ultrasound and microbubbles (USMB) has been shown to improve drug delivery and to enhance the efficacy of several drugs in vitro and in vivo, through effects collectively known as sonopermeation. However, clinical translation of USMB therapy is hampered by the large variety of (non-clinical) US set-ups and US parameters that are used in these studies, which are not easily translated to clinical practice. In order to facilitate clinical translation, the aim of this study was to prove that USMB therapy using a clinical ultrasound system (Philips iU22) in combination with clinically approved microbubbles (SonoVue) leads to efficient in vitro sonopermeation. To this end, we measured the efficacy of USMB therapy for different US probes (S5-1, C5-1 and C9-4) and US parameters in FaDu cells. The US probe with the lowest central frequency (i.e. 1.6 MHz for S5-1) showed the highest USMB-induced intracellular uptake of the fluorescent dye SYTOX™ Green (SG). These SG uptake levels were comparable to or even higher than those obtained with a custom-built US system with optimized US parameters. Moreover, USMB therapy with both the clinical and the custom-built US system increased the cytotoxicity of the hydrophilic drug bleomycin. Our results demonstrate that a clinical US system can be used to perform USMB therapy as efficiently as a single-element transducer set-up with optimized US parameters. Therefore, future trials could be based on these clinical US systems, including validated US parameters, in order to accelerate successful translation of USMB therapy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tino Vollmer ◽  
Börje Ljungberg ◽  
Vera Jankowski ◽  
Joachim Jankowski ◽  
Griet Glorieux ◽  
...  

Abstract Identifying the key toxic players within an in-vivo toxic syndrome is crucial to develop targeted therapies. Here, we established a novel method that characterizes the effect of single substances by means of an ex-vivo incubation set-up. We found that primary human spermatozoa elicit a distinct motile response on a (uremic) toxic milieu. Specifically, this approach describes the influence of a bulk toxic environment (uremia) as well as single substances (uremic toxins) by real-time analyzing motile cellular behavior. We established the human spermatozoa-based toxicity testing (HSTT) for detecting single substance-induced toxicity to be used as a screening tool to identify in-vivo toxins. Further, we propose an application of the HSTT as a method of clinical use to evaluate toxin-removing interventions (hemodialysis).


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1831 ◽  
Author(s):  
Renata M. Sumalan ◽  
Raufdzhon Kuganov ◽  
Diana Obistioiu ◽  
Iuliana Popescu ◽  
Isidora Radulov ◽  
...  

There is an increasing interest in developing natural methods to replace the current chemicals used for maintaining postharvest quality of citrus fruits. The essential oil antifungal activity of mint (MEO), basil (BEO), and lavender (LEO) acting as the vapor-phases was tested against Penicillium digitatum. The minimum doses with fungistatic and fungicidal effect, in vitro, acting as the vapor-phases, were set up. The minimum fungicidal dose was 300 μL for BEO and 350 μL LEO, while for MEO only minimal dose with fungistatic effect was reached. The IC50 values were calculated and used (v/v) for testing preservation of lemon fruits, in close space enriched in vapor oil. For this purpose, the following two independent in vivo experiments were carried out: experiment 1, inoculated lemons with P. digitatum stored without chemical treatments 7 days, at 22 ± 2 °C, at two concentrations (C1—IC50 equivalent; C2—half of C1); and experiment 2, the non-inoculated lemons kept under the same conditions and concentrations of EO vapor served to evaluate the lemon quality properties. The results showed that antifungal protective effect was provided in the order of LEO-C1 > BEO-C1 > MEO-C1 > BEO-C2 > MEO-C2 > LEO-C2. The quality indicators like weight loss, pH, and firmness were not negatively influenced.


Author(s):  
Basant Khare ◽  
Naina Dubey ◽  
Akash Sharma

Objective: To study the Antiulcer activity of aqueous extract of acacia catechu willd on rodent models by controlled release formulation.Methods: Microspheres were prepared by solvent evapoaration method and were evaluated for various parameters like SEM, stability and in vitro relese. And acacia catechu willd loaded microspheres were evaluated for in vivo study involving Gastric ulceration in rats was induced by Ethanol/HCl. Ulcer genic effect (Ulcer Index), pH and Total acidity, Histopathological studies.Results: Results indicated that Acacia catechu willd microspheres contains some active constituents like flavanoid which are responsible for its anti ulcer activity. Also it was observed aqueous extract loaded microspheres showed maximum activity was found (200 mg/kg) with standard Cimetidine (100 mg/kg) also, the results revealed that aqueous extract microspheres at 200 mg/kg had reduced ulcer incidence significantly, when compared to the control as evident by decrease in ulcer score in the model.Conclusion: Based on the result it can be concluded that microspheres loaded with aqueous extracts of Acacia catechu willd produced promising antiulcer activity and were safe.


2010 ◽  
Vol 5 (5) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Vidya Menon ◽  
Sujata Bhat

Andrographolide 1, a diterpene lactone of Andrographis paniculata, displays in vitro and in vivo antitumor activity against breast cancer models and mouse myeloid leukemia (M1) cells. In the present study, we report the semi-synthesis of andrographolide derivatives and their in vitro activity against A549 (ATCC) (NSCL cancer) cell line. Amongst the derivatives tested, compounds 3- 5 displayed maximum activity, with IC50 values of 22-31 μg/mL.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 3070-3070
Author(s):  
Ilya Tsimafeyeu ◽  
Elina Zaveleva ◽  
Walter Low

3070 Background: Fibroblast growth factor (FGF) receptor 1 (FGFR1) is a potential therapeutic target for the treatment of metastatic RCC. We investigated the preclinical activity of OM-RCA-01, a novel therapeutic humanized anti-FGFR1 antibody with high affinity (Kd of 1.59 nM), in RCC. Methods: To assess the effect of anti-FGFR1 antibody on FGF-mediated signaling, the human renal carcinoma Caki-1 FGFR1-expressing cells were dosed with OM-RCA-01 at 100, 10, and 1 mcg/ml. Control wells were left untreated. Three hours after dosing, bFGF was added at a concentration of 50 ng/ml. Additional control wells were treated with OM-RCA-01 without FGF-stimulation. Cell growth inhibition was determined using Promega’s Cell Titer-Glo assay. CR female NCr nu/nu mice were set up with 1 mm3 Caki-1 tumor fragments sc in flank. Tumor sizes were measured in a blind fashion twice a week with a vernier caliper. Mice with established tumors were randomly divided into vehicle, non-specific IgG or OM-RCA-01 groups per 10 animals in group. Endpoint was significant differences in tumor growth delay. Results: In vitro study showed that bFGF increased proliferation of the human FGFR1-expressing renal carcinoma cells (p=0.011). OM-RCA-01 antibody significantly inhibits FGF-triggered cell proliferation in comparison with control. In vivo, the tumors in untreated mice or mice treated with non-specific IgG continued their aggressive growth to reach the size of 2000 cm3, at which point the mice were killed. In contrast, treatment with OM-RCA-01 not only significant arrested further growth of the tumors (p=0.006) but also demonstrated differences in tumor volume compared with vehicle already on Day 13. A similar anti-tumor activity of OM-RCA-01 was observed when the antibody was given in low (1 mg/kg) or high (10 mg/kg) doses (p=0.917). Administration of 10 mg/kg antibody for up to 35 days resulted in minimal body weight loss and no observations of gross toxicity were made. Conclusions: Targeting FGFR1 blocks FGF/FGFR1 pathway in RCC. Monoclonal antibody OM-RCA-01 has significant early anti-tumor efficacy in Caki-1 xenograft model. Isolated blocking of FGFR1 by low-dose antibody could be safe and effective.


Sign in / Sign up

Export Citation Format

Share Document