scholarly journals Improving Micromeritic Properties of Ibuprofen: An Agglomeration Approach

2017 ◽  
Vol 20 (1) ◽  
pp. 90-98
Author(s):  
Md Sazzadul Islam ◽  
Md Saiful Islam Pathan

Ibuprofen is one of the common NSAIDs having poor water solubility, low dissolution, weak flow properties and reduced compressibility. These downsides of ibuprofen crystal upraise crucial challenges during development of a dosage form. The aim of this present work was to modify the physical form of ibuprofen by changing micromeritic properties. Seven different formulations of ibuprofen agglomerates such as F-1, F-2, F-3, F-4, F-5, F-6 and F-7 were prepared to convert the needle shaped ibuprofen crystals into agglomerates so that the desired micromeritic properties can be achieved. In this study, agglomerates of ibuprofen were prepared by Quasi emulsion solvent diffusion (QESD) method in association with two surfactants (sodium lauryl sulphateand Tween 80) at three different concentrations for each. The micromeritic properties of the prepared agglomerates were evaluated for bulk density, tapped density, Carr’s index, Hausner’s ratio, angle of repose along with the release behavior of agglomerates. From dissolution study, it was observed that the release of drug was directly proportional to the surfactant concentration. Here, it was also revealed that there was no interaction among ibuprofen and other excipients as evident from DSC and FTIR studies.Bangladesh Pharmaceutical Journal 20(1): 90-98, 2017

2017 ◽  
Vol 20 (1) ◽  
pp. 34-38
Author(s):  
SM Moshiur Rahman ◽  
Tushar Saha ◽  
Zia Uddin Masum ◽  
Jakir Ahmed Chowdhury

Excipients play important roles in the manufacturing of direct compressible tablet. The physical properties of excipients like flow properties, bulk density, tapped density, compressibility and diameter of particles are the most important studies which should be taken under consideration. Excipients like lactose, ludipress, avicel, povidone, sodium starch glycolate, sodium lauryl sulfate, sodium carboxy methyl cellulose, polyethylene glycol 4000 (PEG 4000) and maize starch are used and found that PEG 4000, avicel PH-101, ludipress and sodium lauryl sulfate showed an angle of repose below 400 which indicates good flow properties and others are not. The highest compressibility value is obtained from lactose and compressibility value was lowest for PEG 4000. It was found from the average diameter of excipients that sodium starch glycolate is very fine graded powder because all particles pass through a sieve (100 mesh) and the highest value is obtained from PEG 4000.Bangladesh Pharmaceutical Journal 20(1): 34-38, 2017


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Kidan Haily Desta ◽  
Ebisa Tadese ◽  
Fantahun Molla

This study is aimed at evaluating the binding effect of Acacia etbaica gum in granule and tablet formulations using paracetamol as a model drug. Some physicochemical properties of the purified gum such as pH, the presence of tannin and dextrin, solubility, viscosity, loss on drying, total ash value, water solubility index, swelling power, moisture sorption, and powder flow properties were investigated. Paracetamol granules were prepared using wet granulation method at 2%, 4%, 6%, and 8% w / w of the Acacia etbaica gum and compared with granules prepared with reference binders (PVP K-30 and Acacia BP) in similar concentrations. The granules were characterized for bulk and tapped densities, compressibility index and Hausner ratio, angle of repose, flow rate, and friability. Finally, the prepared granules were compressed into tablets and evaluated for different tablet characteristics: weight uniformity, thickness, diameter, crushing strength, tensile strength, friability, disintegration time, and in vitro release profile. The physicochemical characterization revealed that tannins and dextrin are absent in the gum, and the gum has acidic pH. Both the moisture content and total ash values were within the official limits. Furthermore, the gum was found to be soluble in cold and hot water but insoluble in organic solvent and exhibited a shear thickening viscosity profile and excellent flow properties with excellent compressibility. The granules prepared with the gum of Acacia etbaica and reference binders showed good particle size distribution and excellent flow and compressibility properties. All the prepared tablets passed pharmacopeial specifications with respect to their uniformity of weight, thickness, and disintegration time. Tablets formulated with Acacia etbaica gum and acacia BP meet the compendial specification for friability at binder concentrations more than 2%. Drug release properties of all the batches formulated with Acacia etbaica, PVP, and acacia BP complied with the pharmacopeial specification. It can be concluded that the gum of Acacia etbaica could be explored as an alternative excipient for its binder effect in granule and tablet formulations.


Author(s):  
Raj Mohan Radhakrishnan ◽  
Venkatraman Ramamoorthi ◽  
Raghuraman Srinivasan

In this study, aluminium-silicon alloy AlSi10Mg powder of spherical morphology was mixed with niobium carbide powder had irregular morphology in weight percentages of 2, 4, 6 and 8 and processed in a planetary ball mill apparatus. The optimal conditions for powder processing were a mixing time of 1.95 h and a speed of 71 RPM without milling balls. The use of milling balls was avoided to maintain the morphology of AlSi10Mg from degradation and improve the flowability of composite powder. To evaluate the flowability of processed powders, flow properties such as apparent density, tapped density, Hausner’s ratio, Carr index, static angle of repose and Hall flow rate were determined. Selective laser melting was used to fabricate AlSi10Mg composite specimens with varying percentages of niobium carbide. Finally, at 6% niobium carbide, the selective laser melting cube specimen had a maximum relative density of 99.21%.


Author(s):  
K Sunand ◽  
V Sandhya ◽  
A Swapna ◽  
K Prasanth ◽  
A Vijaya ◽  
...  

In the present work, an attempt has been made to develop fast disintegrating tablets of Selegiline, were as sodium starch glycolate, cross povidone and cross carmellose sodium were employed as super disintegrating agents to enhance the solubility and dissolution rate of drug molecule. Formulations were prepared by direct compression method using 6mm punch on 8 station rotary tablet punching machine. The blend of all the formulations showed good flow properties such as angle of repose, bulk density and tapped density. The prepared tablets have shown good post compression parameters and they passed all the quality control evaluation parameters as per IP limits. Among all the formulations F2 formulation showed maximum percentage drug release i.e., 97.26 % in 45 min, hence it is considered as optimized formulation. The F2 formulation contains SSG as super disintegrate in the concentration of 24mg.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Prateek Juneja ◽  
Birender Kaur ◽  
Oluwatoyin A. Odeku ◽  
Inderbir Singh

In the present study, corn Starch-Neusilin UFL2 conjugates were prepared by physical, chemical, and microwave methods with the aim of using the conjugates as tablet superdisintegrant. Various powder tests, namely, angle of repose, bulk density, tapped density, Hausner’s ratio, Carr’s index, swelling index, and powder porosity were conducted on the samples. The conjugates were characterized by ATR-FTIR, XRD, DSC, and SEM techniques. Heckel and Kawakita models were applied to carry out compression studies for the prepared conjugates. Fast disintegrating tablets of domperidone were prepared using corn starch and corn Starch-Neusilin UFL2 conjugates as tablet superdisintegrants in different concentrations. Conjugates were found to possess good powder flow and tabletting properties. Heckel analysis indicated that the conjugates prepared by microwave method showed the slowest onset of plastic deformation while Kawakita analysis indicated that the conjugates prepared by microwave method exhibited the highest amount of total plastic deformation. The study revealed that the corn Starch-Neusilin UFL2 conjugates possess improved powder flow properties and could be a promising superdisintegrant for preparing fast disintegrating tablet. Also, the results sugessted that the microwave method was found to be most effective for the preparation of corn Starch-Neusilin UFL2 conjugates.


2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Bhukya Nagaraju ◽  
B Ramu ◽  
S V Saibaba ◽  
B Rajkamal

<p>In the present work, an attempt has been made to develop gastro retentive floating tablets of Doxofylline<strong> .</strong>HPMC K4M and carbopol were used as controlled release polymers<strong>.</strong> All the formulations were prepared by direct compression method on 12 station rotary tablet punching machine. The blend of all the formulations showed god flow properties such as angle of repose, bulk density, tapped density. The prepared tablets were shown good post compression parameters and they passed all the quality control evaluation parameters as per I.P limits. FH 5 was the best optimized floating formulation because it released drug completely in 12hrs.It was also observed that the increasing concentration of polymers had a retarding effect on the drug release from the polymer matrices.</p>


2020 ◽  
Vol 16 (9) ◽  
pp. 1404-1410
Author(s):  
Rishabha Malviya

Background: In the previous study, investigators have synthesized acrylamide grafted and carboxymethylated derivatives of neem gum and evaluated their potential in the formulation of nanoparticles. In continuation of previous work, authors have evaluated neem gum polysaccharide (NGP), acrylamide grafted neem gum polysaccharide (NGP-g-Am) and carboxymethylated neem gum polysaccharide (CMNGP) as binding agent in the tablet dosage form. Methods: Diclofenac sodium was used as a model drug while microcrystalline cellulose and talc were used as excipient in the preparation of granules employing wet granulation technique. NGP, NGP-g-Am and CMNGP were utilized as binding agent in the preparation of granules. Prepared granules were characterized for various pre-compression and post-compression parameters. Results and Discussion: Binding agents were used in the concentration of 4-24%w/w. NGP incorporated granules showed more bulk density and lower values of tapped density, Carr’s index, bulkiness, Hausner’s ratio and angle of repose as compared to NGP-g-Am consisting granules. NGP-g-Am consisting tablets showed more hardness and zero friability as compared to NGP based tablets. Drug content was found lower for the tablets having grafted polymer in place of NGP. CMNGP were also utilized to prepare granules but granules were not be able to compress keeping all the compacting parameters same as used in the case of NGP and NGP-g-Am consisting granules. NGP and NGP-g-Am were able to sustain drug release up to 6 and 8 h, respectively. Conclusion: It can be concluded that NGP-g-Am induces better properties when used as a binder in the tablet formulation than native polymer, while CMNGP cannot be utilized as a binding agent in the preparation of a tablet.


2020 ◽  
Vol 12 ◽  
Author(s):  
Sagar R. Pardeshi ◽  
Harshal A. Mistari ◽  
Rakhi S. Jain ◽  
Pankaj R. Pardeshi ◽  
Rahul L. Rajput ◽  
...  

Background: Moxifloxacin is a BCS class I drug used in the treatment of bacterial conjunctivitis and keratitis. Despite its high water solubility, it possesses limited bioavailability due to anatomical and physiological constraints associated with the eyes which required multiple administrations to achieve a therapeutic effect. Objective: In order to prolong drug release and to improve antibacterial efficacy for the treatment of bacterial keratitis and conjunctivitis, moxifloxacin loaded nanoemulsion was developed. Methods: The concentration of oil (oleic acid), surfactant (tween 80), and cosurfactant (propylene glycol) were optimized by employing a 3-level 2-factorial design of experiment for the development of nanoemulsion. The developed nanoemulsion was characterized by particle size distribution, viscosity, refractive index, pH, drug content and release, transmission electron microscopy (TEM), and antibacterial study. The compatibility of the drug with the excipients was accessed by Fourier transform infrared spectroscopy (FTIR). Result: The average globule size was found to be 198.20 nm. The TEM study reveals the globules were nearly spherical and are well distributed. In vitro drug release profile for nanoemulsion shown sustained drug release (60.12% at the end of 6 h) compared to drug solution, where complete drug released within 2 h. The antibacterial effectiveness of the drug-loaded nanoemulsion was improved against S. aureus compared with the marketed formulation. Conclusion: The formulated sustained release nanoemulsion could be a promising alternative to eye drop with improved patient compliance by minimizing dosing frequency with improved antibacterial activity.


Dose-Response ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 155932582110136
Author(s):  
Mohamed F. Radwan ◽  
Mohamed A. El-Moselhy ◽  
Walied M. Alarif ◽  
Mohamed Orif ◽  
Nabil K. Alruwaili ◽  
...  

To improve the water solubility of thymoquinone (TQ), a major constituent of Nigella sativa seed oil, a TQ-loaded self-nanoemulsifying drug delivery system (SNEDDS) was prepared. The SNEDDS formulation was optimized using almond oil (AO) (Oil; X1), tween 80 (surfactant; X2) and polyethylene glycol 200 (PEG 200) (cosurfactant; X3) compounds as independent variables. The results showed that the globule size ranged from 65 to 320 nm. In addition, a strong agreement was reached between the system estimation and the experimental values of globule size. To evaluate the gastroprotective effect of optimized TQ-loaded SNEDDS against indomethacin (Indo.)-induced gastric ulcers in comparison with non-emulsified TQ, the ulcer index and histopathological changes were estimated. Optimized TQ-loaded SNEDDS showed improved gastroprotective activity against Indo.-induced ulcers relative to the non-emulsified TQ. In addition, the gastroprotective index was improved by 2-fold in TQ-loaded SNEDDS as compared to non-emulsified TQ. This is attributed to the strong antioxidant and the cytoprotective activities of the TQ. These results demonstrate enhancement of the efficacy of TQ through the optimized SNEDDS.


Gesture ◽  
2005 ◽  
Vol 4 (2) ◽  
pp. 157-195 ◽  
Author(s):  
Jennifer Gerwing ◽  
Janet Bavelas

Hand gestures in face-to-face dialogue are symbolic acts, integrated with speech. Little is known about the factors that determine the physical form of these gestures. When the gesture depicts a previous nonsymbolic action, it obviously resembles this action; however, such gestures are not only noticeably different from the original action but, when they occur in a series, are different from each other. This paper presents an experiment with two separate analyses (one quantitative, one qualitative) testing the hypothesis that the immediate communicative function is a determinant of the symbolic form of the gesture. First, we manipulated whether the speaker was describing the previous action to an addressee who had done the same actions and therefore shared common ground or to one who had done different actions and therefore did not share common ground. The common ground gestures were judged to be significantly less complex, precise, or informative than the latter, a finding similar to the effects of common ground on words. In the qualitative analysis, we used the given versus new principle to analyze a series of gestures about the same actions by the same speaker. The speaker emphasized the new information in each gesture by making it larger, clearer, etc. When this information became given, a gesture for the same action became smaller or less precise, which is similar to findings for given versus new information in words. Thus the immediate communicative function (e.g., to convey information that is common ground or that is new) played a major role in determining the physical form of the gestures.


Sign in / Sign up

Export Citation Format

Share Document