scholarly journals Chitosan-clay nanocomposite as a drug delivery system of ibuprofen

2022 ◽  
Vol 11 (1) ◽  
pp. e25911124684
Author(s):  
Albaniza Alves Tavares ◽  
Maria Dennise Medeiros Macêdo ◽  
Pedro Henrique Correia de Lima ◽  
Rossemberg Cardoso Barbosa ◽  
Wladymyr Jefferson Bacalhau Sousa ◽  
...  

Chitosan/montmorillonite nanocomposite films were prepared by the solvent evaporation method to immobilize the drug ibuprofen (IBU) and delay its release in a medium that simulates the environment of the gastrointestinal tract. The effects of montmorillonite, at different mass proportions (10, 20, and 50%), on the morphological and physical properties of the films were studied. The samples were characterized by X-ray diffraction (XRD), Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), degree of swelling, drug encapsulation, and drug release efficiency. According to the XRD it was evidenced that the incorporation of montmorillonite to chitosan led to the formation of nanocomposites of ordered morphology. The infrared spectra confirmed the good interaction between montmorillonite and chitosan by the formation of nanocomposites. This fact, which favored the imprisonment of the IBU, reduced the diffusion coefficient in the studied systems. The micrographs comproved the formation of dense and uniform films. The controlled release profile, especially for the nanocomposite with 10% clay mass, showed a slow drug release rate. The incorporation of montmorillonite at different proportions produced different morphologies, with good encapsulation efficiency and an adequate profile for the controlled release of the drug.

2019 ◽  
Vol 34 (4-5) ◽  
pp. 401-411
Author(s):  
Rajalakshmi Ramamoorthy ◽  
Muthumanickkam Andiappan ◽  
Murugesan Muthalagu

The polyherbal-loaded polycaprolactone nanofibrous mat was prepared by electrospinning technique, and physical and chemical characteristics of nanofibrous mats were studied using scanning electron microscopy, x-ray diffraction, thermogravimetric analyzer, and Fourier transform infrared spectroscopy. The presence of various phytochemicals in the crude monoherbal and polyherbal extracts was analyzed. The antimicrobial activity and biocompatibility of the polyherbal-loaded nanofibrous mats were studied. The drug release pattern of the polyherbal-loaded nanofibrous mats was studied at different time intervals. The 5% drug-loaded nanofibrous mat shows higher sustainable drug release rate than 1% and 3% drug-loaded nanofibrous mats. The cell viability was found to be 98.91%, 98.77%, 98.5%, and 98.22% for polycaprolactone and 1%, 3%, and 5% for polyherbal-loaded nanofibrous mats, respectively.


Author(s):  
SUCHISMITA MOHANTY ◽  
SUBRATA SARANGI ◽  
GOURI SANKAR ROY

Objective: The purpose of the present study was to functionalized graphene (f-GE) grafted chitosan (CS)/Polyaniline (PANI) with Montmorillonite (MMT) was different feed ratio known as f-GE-g-(CS/MMT-PANI). Methods: The prepared f-GE-g-(CS/MMT-PANI) was formulated using the solvent casting method. The prepared nanocomposites were characterized by X-Ray Diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), Thermogravimetric analysis (TGA), thermogravimetric (DTG) and swelling in stimulated in the different biological fluid. The model drug Doxorubicin (DOX) was used for controlled drug delivery purpose. Results: From FTIR result was clearly demonstrated that the model drug DOX did not change in any molecular level at f-GE-(CS/MMT-PANI) (i.e. at<10 nm scale). Additionally, in DSC result, DOX was interacted with nanocomposites at scale>100 nm level. With CS as the carrier, 60% of the drug was released in SIF for the initial 120 min and this increased to 80–82% with f-GE-g-CS/MMT/PANI matrix. But in SGF, CS as the carrier, 46% of the drug was released in 140 min and this increased to 78% with f-GE-g-CS/MMT/PANI. In vitro drug release system was carried out by Korsmeyer Peppas’s power law. DOX and other drugs like Doxorubicin (DOX) was presented an exceptional higher drug result in different pH medium. Conclusion: It was observed that CS/MMT was decreasing less drug release rate compared to f-GE-g-(CS/MMT-PANI). So that it can be clearly understood that f-GE-g-(CS/MMT-PANI) grafted nanocomposites have enhanced drug release activity in different pH medium.


Author(s):  
Rajesh Dubey ◽  
Udaya K. Chowdary ◽  
Venkateswarlu V.

A controlled release formulation of metoclopramide was developed using a combination of hypromellose (HPMC) and hydrogenated castor oil (HCO). Developed formulations released the drug over 20 hr with release kinetics following Higuchi model. Compared to HCO, HPMC showed significantly higher influence in controlling the drug release at initial as well as later phase. The difference in the influence can be explained by the different swelling and erosion behaviour of the polymers. Effect of the polymers on release was optimized using a face-centered central composite design to generate a predictable design space. Statistical analysis of the drug release at various levels indicated a linear effect of the polymers’ levels on the drug release. The release profile of formulations containing the polymer levels at extremes of their ranges in design space was found to be similar to the predicted release profile


RSC Advances ◽  
2015 ◽  
Vol 5 (32) ◽  
pp. 25164-25170 ◽  
Author(s):  
Bo Zhang ◽  
Teng Zhang ◽  
Quanxi Wang ◽  
Tianrui Ren

A controlled release system was prepared, it based on UF modified PCC cells in which TEB are loaded into cells. It can control the drug release rate, depress the initial “burst effect”, and was efficacious in controlling wheat powdery mildew.


2012 ◽  
Vol 31 (1) ◽  
pp. 79
Author(s):  
Khalil Faghihi ◽  
Masoumeh Soleimani ◽  
Shabnam Nezami ◽  
Meisam Shabanian

Two new samples of poly(amide-imide)-montmorillonite reinforced nanocomposites containing N-trimellitylimido-L-valine moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 5 as a source of polymer matrix was synthesized by the direct polycondensation reaction of N-trimellitylimido-L-valine (3) with 4,4′-diaminodiphenyl ether 4 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PA-nanocomposite films (5a) and (5b) with 10 and 20 % silicate particles were characterized by FTIR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of clay dispersion and the interaction between clay and polymeric chains on the properties of nanocomposite films were investigated by using Uv-vis spectroscopy,  thermogravimetric analysis (TGA) and water uptake measurements.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Rai Muhammad Sarfraz ◽  
Muhammad Rouf Akram ◽  
Muhammad Rizwan Ali ◽  
Asif Mahmood ◽  
Muhammad Usman Khan ◽  
...  

Current research work was carried out for gastro-protective delivery of naproxen sodium. Polyethylene glycol-g-poly (methacrylic acid) nanogels was developed through free radical polymerization technique. Formulation was characterized for swelling behaviour, entrapment efficiency, Fourier transform infrared (FTIR) spectroscopy, Differential scanning calorimetry (DSC), and Thermal Gravimetric Analysis (TGA), Powder X-ray diffraction (PXRD), Zeta size distribution, and Zeta potential measurements, and in-vitro drug release. pH dependent swelling was observed with maximum drug release at higher pH. PXRD studies confirmed the conversion of loaded drug from crystalline to amorphous form while Zeta size measurement showed size reduction. On the basis of these results it was concluded that prepared nanogels proved an effective tool for gastro-protective delivery of naproxen sodium.


2019 ◽  
Vol 11 (2) ◽  
pp. 142-153
Author(s):  
Rutuja V. Deshmukh ◽  
Pavan Paraskar ◽  
S. Mishra ◽  
Jitendra Naik

Background: Nateglinide is an antidiabetic drug having biological half-life 1.5 h which shows a concise effect. Graphene oxide along with chitosan can be used as a nanocarrier for sustained release of Nateglinide. Objective: To develop Nateglinide loaded graphene oxide-chitosan nanocomposites and to evaluate for different characterization studies. Methods: Graphene Oxide (GO) was synthesized by improved hummer’s method and drug-loaded Graphene oxide - chitosan nanocomposites were prepared. Box Behnken design was used to carry out experiments. The nanocomposites were characterized for encapsulation efficiency and drug release. Morphology was studied using field emission scanning electron microscope and transmission electron microscope. An interaction between drug, polymer and GO was investigated by Fourier transform infrared spectroscopy and X-ray diffractometer along with in vitro drug release study. Results: The statistical evaluation of the design showed linear and quadratic models which are significant models for encapsulation efficiency (R1 0.6883, 0.9473) and drug loading (R2 0.6785, 0.9336), respectively. Fourier transform infrared spectroscopy showed the compatibility of GO, Chitosan and Nateglinide. X-ray diffractometer reveals the change in degree of crystallinity of drug. FE-SEM and TEM images confirmed the distribution of the drug within the nanocomposites. Design expert reveals that the concentration of GO has great influence on encapsulation efficiency. In Vitro drug release showed the sustained release of drug over the period of 12 h. Conclusion: GO-Chitosan nanocomposites can be used as a sustained release carrier system for Nateglinide to reduce dose frequency of drug as well as its probable side effects.


2017 ◽  
Vol 751 ◽  
pp. 825-830 ◽  
Author(s):  
Phuri Kalnaowakul ◽  
Tonghathai Phairatana ◽  
Aphichart Rodchanarowan

In this study, the photocatalytic properties and morphology of TiO2, ZnO, Ag-graphene-zinc oxide (Ag-G-ZnO) and Ag-graphene-titanium dioxide (Ag-G-TiO2) nanocomposite were compared. The Ag-G-ZnO and Ag-G-TiO2 nanocomposite were successfully prepared by thermal decomposition of colloidal solution. These prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis spectroscopy and photocatalytic activities. The results from XRD patterns show that Ag-G-TiO2 composites and the Ag-G-ZnO nanocomposites were in the form of fcc and hcp crystal structure, respectively. The SEM images show that at calcination of 500 °C for 3 h, the composite thin film of Ag-G-ZnO and Ag-G-TiO2 were homogenous. In the case of the photocatalytic experiments using methylene blue dye (MB) under UV irradiation, the order of the photocatalytic activities from high to low performances are Ag-G-ZnO, Ag-G-TiO2, ZnO and TiO2, respectively.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 564 ◽  
Author(s):  
Anastasia Koltsakidou ◽  
Zoi Terzopoulou ◽  
George Kyzas ◽  
Dimitrios Bikiaris ◽  
Dimitra Lambropoulou

In the present study, polymer supported nanocomposites, consisting of bio-based poly(ethylene furanoate) polyester and TiO2 nanoparticles, were prepared and evaluated as effective photocatalysts for anti-inflammatory/analgesic drug removal. Nanocomposites were prepared by the solvent evaporation method containing 5, 10, 15, and 20 wt% TiO2 and characterized using Fourier Transform Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Thin films of them have been prepared by the melt press and optimization of the photocatalytic procedure was conducted for the most efficient synthesized photocatalyst. Finally, mineralization was evaluated by means of Total organic carbon (TOC) reduction and ion release, while the transformation products (TPs) generated during the photocatalytic procedure were identified by high-resolution mass spectrometry.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 582
Author(s):  
Yung-Sheng Lin ◽  
Ruey-Yug Tsay

Amending the neglect of finite dissolution in traditional release models, this study proposed a more generalized drug release model considering the simultaneous dissolution and diffusion procedure from a drug-loaded spherical matrix. How the shape factor (n = 0, 1/2, and 2/3 for the planar, cylindrical, and spherical geometry, respectively) of dispersed drug particles affected the release from the matrix was examined for the first time. Numerical solutions of this generalized model were validated by consensus with a short-time analytical solution for planar drugs and by the approach of the diffusion-controlled limits with Higuchi’s model. The drug release rate increases with the ratio of dissolution/diffusion rate (G) and the ratio of solubility/drug loading (K) but decreases with the shape factor of drug particles. A zero-order release profile is identified for planar drugs before starting the surface depletion layer, and also found for cylindrical and spherical dispersed drugs when K and G are small, i.e. the loaded drug is mainly un-dissolved and the drug release rate is dissolution-controlled. It is also shown that for the case of a small G value, the variation of drug release profile, due to the drug particle geometry, becomes prominent. Detailed comparison with the results of the traditional Higuchi’s model indicates that Higuchi’s model can be applied only when G is large because of the assumption of an instantaneous dissolution. For K = 1/101–1/2, the present analysis suggests an error of 33–85% for drug release predicted by Higuchi’s model for G = 100, 14–44% error for G = 101, while a less than 5% error for G ≧ 103.


Sign in / Sign up

Export Citation Format

Share Document