scholarly journals Possibility to use waste tire waste in the composition of mixtures for the manufacture of cement blocks

2020 ◽  
Vol 9 (9) ◽  
pp. e69996773
Author(s):  
Maria Gabriela Araujo Ranieri ◽  
Maria Auxiliadora de Barros Martins ◽  
Patrícia Capellato ◽  
Mirian de Lourdes Noronha Motta Melo ◽  
Adilson da Silva Mello

The modern lifestyle has led to an increase in the amount of solid waste in the world, and waste tires are one of the most generated. Annually billions of tons of waste tires are produced, so in this study, we sought to reuse them to make materials for civil construction. For this, a laboratory research was carried out where samples were made in 50 x 100 mm cylinders with traces of 0, 10, 15 and 20% (by weight) of waste, in addition to cement, natural sand and water. The granulometric distribution of waste tires and sand was also carried out. And, with the samples in cylinders, the physical and mechanical properties were evaluated, such as water absorption and apparent density, in addition to the analysis of the mechanical resistance to compression and the modulus of elasticity. The results showed that the granulometric distribution of the tire residue fits as a fine aggregate, similar to the sand granulometry. The water absorption rate of the waste specimens was less than 10%. However, the mechanical resistance decreases proportionally as the amount of tire waste has increased. However, when analyzing the behavior of the stress x strain curves, the specimens containing residues, became more flexible, as they are capable of supporting loads beyond the maximum stress. In this way, the resistance and the ability to absorb energy were increased. We concluded that it is possible to incorporate certain quantities of waste tires in blocks for civil construction, but without a structural function.

2021 ◽  
Vol 1203 (2) ◽  
pp. 022115
Author(s):  
Luis G. Baltazar

Abstract The construction sector is one of the largest and most active in the world economy, being responsible for consumption of huge amounts of natural resources. Natural sand and gravel are the most important resources in construction, they are mainly used as aggregates, and its extraction often causes environmental damages. Bearing these considerations in mind, the wood waste has been used as partial replacement of natural sand in concrete and mortars to reduce the environmental burden of natural sand extraction. The aim of this paper is to characterize the physical and mechanical properties of natural hydraulic lime-based mortars proportioned with different percentages of wood wastes (0% to 30%) as replacement of natural sand. Thus, several specimens of mortar proportioned with wood wastes have been subjected to different experimental procedures, such as: workability, mechanical strength, water absorption and thermal conductivity. Results obtained showed that the incorporation of wood waste causes a reduction of mechanical resistance mostly due to the increase in open porosity, but on the other hand the thermal conductivity presents an improvement up to 83%. The results obtained are quite acceptable and encouraging for the follow-up studies using wood wastes as fine aggregate in mortars and, simultaneously, to improve the energy efficiency of buildings since this waste material contributes to obtain mortars with improved thermal performance.


2021 ◽  
Author(s):  
Herbet Alves Oliveira

Lightweight concrete has as main characteristic its low density due to the incorporation of light materials such as expanded clay, or even the incorporation of air whose function is to reduce the density, characteristic of cellular concrete. In Aracaju city, there are companies that promote tire reconditioning, generating large amounts of waste dust. The aim of this work is to study the reuse of tire rubber waste in light concrete from expanded clay. An experimental program was developed for the analysis of these concretes, varying the percentage of 1%, 2.5% and 5% of the tire rubber waste to replace the natural fine aggregate and 100% replacing the natural coarse aggregate by expanded clay (50% of expanded clay C1506 and 50% of C2215). The materials (cement, sand, expanded clays and tire rubber waste) were characterized through tests of particle size analysis and unit mass. The hardened concrete was evaluated through mechanical tests of axial compression strength, modulus of elasticity and tensile strength by diametrical compression, physical tests of water absorption and specific mass, in addition to image analysis by scanning electron microscopy. The use of expanded clay with incorporation of 1% of tire rubber waste guaranteed better results in mechanical resistance, lower water absorption and greater specific mass than the mixtures with 2.5 and 5%, reaching values close to the reference concrete. Thus, the residue can be an alternative for reuse, avoiding disposal.


2021 ◽  
Vol 10 (1) ◽  
pp. 11-20
Author(s):  
Ahmed S. Ouda

The influence of superplasticizer addition on durability reinforcement of cement mortars made with basic-oxygen blast-furnace slag fine aggregate (BOF) as completely substitute for natural sand after being exposed to sea water solution for 6 months was evaluated by determining physico-mechanical characteristics in terms of water absorption and compressive strength in addition to microstructure analysis. In this procedure, all studied mixtures were doped with 1% and 2% superplasticizer. After the initial curing of samples in tap water for 28 days, they were subjected to sea water solution for 6 months using water to binder ratios of 0.35 and 0.45. The new hydration phases and microstructure of hardened specimens were identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The results showed that cement mortars with slag fine aggregate blended with 2% SP offered better water absorption, compressive strength and microstructure than their counterparts with natural sand against sea water attacks. Therefore, they can be used in offshore structure applications.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4580
Author(s):  
Edyta Pawluczuk ◽  
Katarzyna Kalinowska-Wichrowska ◽  
Mahfooz Soomro

Nowadays, effective and eco-friendly ways of using waste materials that could replace natural resources (for example, sand) in the production of concrete composites are highly sought. The article presents the results of research on geopolymer composites produced from two types of waste materials—hemp and fine fractions recovered from recycled cement concrete, which were both used as a replacement for standard sand. A total of two research experiments were conducted. In the first experiment, geopolymer mortars were made using the standard sand, which was substituted with recycled fines, from 0% to 30% by weight. In the second study, geopolymers containing organic filler were designed, where the variables were (i) the amount of hemp and the percent of sand by volume (0%, 2.5%, and 5%) and(ii) the amount of hydrated lime and the percent of fly ash (by weight) (0%, 2%, and 4%) that were prepared. In both cases, the basic properties of the prepared composites were determined, including their flexural strength, compressive strength, volume density in a dry and saturated state, and water absorption by weight. Observations of the microstructure of the geopolymers using an electron and optical microscope were also conducted. The test results show that both materials (hemp and recycled fines) and the appropriate selection of the proportions of mortar components and can produce composites with better physical and mechanical properties compared to mortars made of only natural sand. The detailed results show that recycled fines (RF) can be a valuable substitute for natural sand. The presence of 30% recycled fines (by weight) as a replacement for natural sand in the alkali-activated mortar increased its compressive strength by 26% and its flexural strength by 9% compared to control composites (compared to composites made entirely of sand without its alternatives). The good dispersion of both materials in the geopolymer matrix probably contributed to filling of the pores and reducing the water absorption of the composites. The use of hemp as a sand substitute generally caused a decrease in the strength properties of geopolymer mortar, but satisfactory results were achieved with the substitution of 2.5% hemp (by volume) as a replacement for standard sand (40 MPa for compressive strength, and 6.3MPa for flexural strength). Both of these waste materials could be used as a substitute for natural sand and are examples of an eco-friendly and sustainable substitution to save natural, non-renewable resources.


2017 ◽  
Vol 744 ◽  
pp. 55-60
Author(s):  
Khaleel H. Younis ◽  
Harth S. Naji ◽  
Khalid B. Najim

The utilization of crumb rubber particles extracted from waste tires in the production of self-compacting concrete (SCC) is a decent and sustainable solution to mitigate the impacts of such waste on environment. The aim of this study is to evaluate the cracking tendency of SCC with different content of crumb rubber extracted from waste tires. Five SCC mixtures were prepared. The reference mix was made with natural sand while the other four mixes were made with crumb rubber in which the natural sand was volumetrically replaced by crumb rubber at ratios of 10 %, 20 %, 30 % and 40 %, respectively. The results show that the addition of crumb rubber delays the cracking of concrete. The cracking time increases with the increase of the rubber content. The results also reveal that the addition of rubber particles not only increases the cracking time but also reduces the initial and final crack width.


2021 ◽  
Vol 945 (1) ◽  
pp. 012037
Author(s):  
A A Dyg Siti Quraisyah ◽  
K Kartini ◽  
M S Hamidah

Abstract In construction industry nowadays, self-compacting concrete (SCC) is a concrete technology innovation which gives more benefits over conventional concrete. SCC was invented to improve concrete durability without using any vibrator while placing it into formwork. In order to conserve natural sand, quarry dust (QD) as a waste and sustainable material has been incorporated to replace fine aggregate in SCC. In this study, conventional concrete and quarry dust in self-compacting concrete (QDSCC) mixes consist of 0%, 10%, 20%, 30%, 40% and 50% QD were prepared. The workability test was conducted to determine the performance of fresh concrete and ensuring all the QDSCC properties follow the acceptance criteria for SCC. Meanwhile, the hardened concrete specimens were water cured for 7, 28 and 60 days to conduct water absorption test. This research aim is to determine water absorption of incorporating sustainable QDSCC. Thus, it resulted that 50% of QDSCC has achieved the lowest water absorption of QDSCC as compared to other dosages. Finally, sustainability in concrete technology can be promoted by incorporating QDSCC.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1168 ◽  
Author(s):  
Md Jihad Miah ◽  
Md Kawsar Ali ◽  
Suvash Chandra Paul ◽  
Adewumi John Babafemi ◽  
Sih Ying Kong ◽  
...  

This study evaluates the mechanical, durability, and residual compressive strength (after being exposed to 20, 120, 250, 400 and 600 °C) of mortar that uses recycled iron powder (RIP) as a fine aggregate. Within this context, mechanical strength, shrinkage, durability, and residual strength tests were performed on mortar made with seven different percentages (0%, 5%, 10%, 15%, 20%, 30% and 50%) of replacement of natural sand (NS) by RIP. It was found that the mechanical strength of mortar increased when replaced with up to 30% NS by RIP. In addition, the increase was 30% for compressive, 18% for tensile, and 47% for flexural strength at 28 days, respectively, compared to the reference mortar (mortar made with 100% NS). Shrinkage was observed for the mortar made with 100% NS, while both shrinkage and expansion occurred in the mortar made with RIP, especially for RIP higher than 5%. Furthermore, significantly lower porosity and capillary water absorption were observed for mortar made with up to 30% RIP, compared to that made with 100% NS, which decreased by 36% for porosity and 48% for water absorption. As the temperature increased, the strength decreased for all mixes, and the drop was more pronounced for the temperatures above 250 °C and 50% RIP. This study demonstrates that up to 30% RIP can be utilized as a fine aggregate in mortar due to its better mechanical and durability performances.


2021 ◽  
Vol 9 (1) ◽  
pp. 50-58
Author(s):  
Suharwanto

ABSTRAKBeton daur ulang merupakan campuran dari agregat kasar atau agregat halus daur ulang. Salah satunya dibuat dari hasil bongkaran pelat beton perkesaran kaku jalan (rigid pavement). Pembongkaran ini disebabkan oleh kerusakan, keretakan dan keausan pada perkerasan kaku yang diakibatkan oleh beban kendaraan. Bongkaran beton tersebut seringkali dibuang di sembarangan tempat atau hanya  menjadi bahan urugan saja. Hal ini  tidak menguntungkan, sehingga pada penelitian ini, bongkaran perkerasan kaku tersebut dijadikan sebagai agregat daur ulang. Pemanfaatan bongkaran beton ini merupakan perkembangan material beton, namun belum umum digunakan untuk material perkerasan kaku. Oleh karena itu, penelitian ini memanfaatkan bongkaran beton tersebut sebagai bahan baku beton dan diuji secara eksperimental untuk mendapatkan sifat fisik dan mekanik beton daur ulang. Hasil pengujian laboratorium menunjukkan bahwa persentase kadar air dan berat jenis agregat daur ulang lebih kecil dari agregat alam atau batu pecah, namun persentase abrasi dan penyerapan air atau porositas lebih besar dari pada agregat alam. Selanjutnya, agregat daur ulang tersebut digunakan sebagai pengganti agregat kasar alam dengan variasi 0, 25, 50, 75 dan 100%, dan kuat tekan rencana beton 20, 25 dan 30 Mpa. Hasil uji slump sebagai salah satu jenis uji beton segar mengalami penurunan, karena adanya peningkatkan kandungan agregat daur ulang, yaitu 2,17 – 15,74 %. Begitu juga penurunan hasil uji berat volume yaitu 0.88 – 9,28%, nilai kuat tekan beton adalah 3.7 -  25,7%  dan tarik beton adalah 21,90 – 65,22%. Hal ini diakibatkan oleh peningkatan nilai persentase abrasi dan penyerapan air pada agregat daur ulang.     ABSTRACTRecycled concrete is a mixture from recycled coarse or fine aggregate. One of them is made from demolished of road rigid pavement of concrete slab. It is coused by to damage, cracks and abrasion on the rigid pavement that is caused by vehicle loaded. The concrete demolished is often dumped in the  any places or becomes fill material only. It has not benefited, so in this research, demolished of rigid pavement is made as a recycled aggregate. Utilization of this demolished concrete is a concrete material development, but it is not used commonly for rigid pavement material yet. Therefore, this research was use concrete demolished as raw material of concrete and it is tested experimentally to obtain the physical and mechanical properties of recycle concrete. Laboratory test result of water content percentage and specific gravity of recycled aggregate are smaller than natural aggregate or crush rock, but abrasion and water absorption or porosity percentage are greater than natural aggregate. Furthermore, the recycled aggregate is used as a substitute for natural coarse aggregate which variations of 0, 25, 50, 75 and 100%, and concrete compressive strength design is 20, 25 and 30 MPa. Result of the slump test as false The slump test as a kind of fresh concrete test does decrease when increasing the recycled aggregate content, that is 2 -16,%.. Likewise, decreasing of concrete weight volume is 0.88 – 9,28%,  concrete compressive test results us  3.7 -  25,7% and concrete tensile strength is 21,90 – 65,22%. Those are caused by increasing abrasion and water absorption percentage of recycled aggregate.


2016 ◽  
Vol 706 ◽  
pp. 112-116 ◽  
Author(s):  
Sallehan Ismail ◽  
Zafirol Abdullah Halim Anas ◽  
Yaacob Zaiton

Continuous reduction of construction mineral resources, such as sand and cement, which influence the increase in cost of raw materials, has stimulated initiatives to look for alternative sustainable materials. This research aims to determine the potential and feasibility use of recycled fine aggregate (RFA) generated from demolition waste rubble wall as aggregate to replace natural sand in the production of cement and sand bricks. The brick specimens are prepared by using 100% natural sand, which is then replaced by RFA at 25%, 50%, 75%, and 100% by weight of natural sand. Research parameters, such as dimension, compressive and flexural strength, density, and water absorption, are adopted to evaluate the physical and mechanical properties of the brick specimens. In addition, the thermal conductivity of the bricks composed using different RFA proportions are studied. Experimental results clearly indicate that manufacturing cement and sand brick by incorporating RFA is possible, and the effect inclusion of RFA at certain proportions causes a significant improvement in the mechanical properties of bricks. However, to obtain better mechanical strength results, RFA dosages to replace sand should reach up to 50%.


2016 ◽  
Vol 13 (2) ◽  
pp. 67
Author(s):  
Engku Liyana Zafirah Engku Mohd Suhaimi ◽  
Jamil Salleh ◽  
Suzaini Abd Ghani ◽  
Mohamad Faizul Yahya ◽  
Mohd Rozi Ahmad

An investigation on the properties of Tenun Pahang fabric performances using alternative yarns was conducted. The studies were made in order to evaluate whether the Tenun Pahang fabric could be produced economically and at the same time maintain the fabric quality. Traditional Tenun Pahang fabric uses silk for both warp and weft. For this project, two alternative yarns were used which were bamboo and modal, which were a little lower in cost compared to silk. These yarns were woven with two variations, one with the yarns as weft only while maintaining the silk warp and the other with both warp and weft using the alternative yarns. Four (4) physical testings and three (3) mechanical testings conducted on the fabric samples. The fabric samples were evaluated including weight, thickness, thread density, crease recovery angle, stiffness and drapability. The results show that modal/silk and bamboo silk fabrics are comparable in terms of stiffness and drapability, hence they have the potential to replace 100% silk Tenun Pahang.


Sign in / Sign up

Export Citation Format

Share Document