scholarly journals Campuran Fly Ash dan Petrasoil dalam Peningkatan Daya Dukung Tanah

2020 ◽  
Vol 8 (2) ◽  
pp. 99-104
Author(s):  
Indrayani - ◽  
Andi Herius ◽  
Sudarmadji - ◽  
Ahmad Mirza ◽  
Daiyan Saputra ◽  
...  

As an effort to improve the subgrade, some construction projects use petrasoil material to increase the carrying capacity of the soil, for example in the construction of the "Improvement of the Tabarfane-Hokmar Soil Road (Chemical Petrasoil)” in Aru sub-district. Previous research on increasing the carrying capacity of the soil have been done using petrasoil, but the results indicated no soil carrying-capacity increase. On the contrary, another study successfully used fly ash on swamps to increase the soil carrying-capacity. Based on these two studies, the current research combined the two additives, namely, fly ash and petrasoil, to increase soil carrying-capacity and get an optimal additive composition. Some tests have been carried out, i.e. the index properties test, compaction test, and CBR test using AASHTO and ASTM standards. Fly ash mixtures were prepared in several composition percentages, i.e. 0%, 10%, 15%, 20%, while the mixture of petrasoil and water is 1 kg: 1000 liters. The results showed that there was an increase in soil bearing capacity based on the largest CBR value in the variation of mixed soil with petrasoil and fly ash by 20% which is equal to 19.7% of the CBR value of original soil without additives.

2012 ◽  
Vol 598 ◽  
pp. 511-515
Author(s):  
Hong Lu Mao ◽  
Pei Zhi Zhuang ◽  
Yi Wu Feng

The compactness is prone to markedly decreased after dampening in the subgrade filled by Ginger-stone soil. To solve this problem, a series of tests have been done on the conventional and improved Ginger-stone soil, such as granule analysis test, compaction test, CBR test and water stability test. The test results indicates that the CBR value of Ginger-stone soil is low and it has a strong capillary action, which make it cannot be directly used for roadbed filling of expressway and first class highway. By adding the lime(3%) and fly ash (9%) into the Ginger-stone soil, the CBR value and water stability of sample are obviously improved, and its control of construction becomes easy, so the improved Ginger-stone soil can be directly used as roadbed filling.


Expansive soil is a problematic soil which found in wide part of the world that has a high degree of sensitivity, nature of expansion and shrink behavior during water adding and removing this caused insufficient bearing capacity, excessive differential settlement and instability on excavation and embankment forming those conditions accelerate damage of building structure, road highway and dam. Attempt to undertake construction in such type of soil result will be bearing capacity failure, settlement problem. One of the well-known application of Lime and fly ash were improve Atterberg limits, compaction characteristics, bearing capacity and prevention of swelling problem of expansive clay that is why the main reason to select lime and fly ash in this project, both are good binding material to increase the cohesion force and shear strength of soil and assured to established rigid pavements and foundations. The mixing proportion of lime, fly ash and combination of lime and fly ash are (0%, 2 %, 4 % ), (10%, 15% ,20% ), (2 %+10 %, 2 % +15 %, 2 % +20 %) and (4 %+10 %, 4 % + 15 % , 4 %+ 20 %) with expansive soil respectively and then explored how much it modify the characteristics of soil like maximum dry density moisture content, consistency limits, FSI, UCS and CBR value which compare to untreated soil. Lime and fly ash treated soil carried out various tests Such as Moisture content test, consistency limit, compaction test, Unconfined Compression swelling index test and California bearing ratio test then after justify weather the bearing capacity of soil is good or not . Classification of soil was determined by conducting plasticity index and swelling index tests. Effect of lime and fly ash on soil index properties were assessed by conducting Atterberg limits test, strength of soil were assessed by conducting compaction test, UCS tests and CBR test and swelling properties were checked by conducting swelling index test. Expansive clay soil were mixed with lime, fly ash and combination of lime - fly ash by replacement process of soil and then cured for 7, 14 and 28 days.


2011 ◽  
Vol 243-249 ◽  
pp. 3182-3188
Author(s):  
Jian Tian ◽  
Bao Shan Xia ◽  
Jin Di Wang ◽  
Tao Wei

Whether the site of backfilling fly ash was appropriate for engineering geology, and how to use effective means to change the geologic bearing capacity of the site were urgent solving problems. This work took a site of backfilling fly ash in the Beishiwang Village, Yindu District, Anyang City, Henan Province as object of study, detailedly did a complete geologic survey on it, got related data and made its engineering geologic assessment and according to the characteristics and requirements of construction projects, we select the most optimal treatment means of the foundation and adopt the most safe and economic perfusion pile with post-pressure grouting to strengthen this engineering foundation.


2015 ◽  
Vol 114 ◽  
pp. 77-84 ◽  
Author(s):  
Xiangjun Pei ◽  
Fanyu Zhang ◽  
Wanjiong Wu ◽  
Shouyun Liang
Keyword(s):  
Fly Ash ◽  

2012 ◽  
Vol 594-597 ◽  
pp. 1445-1448
Author(s):  
Tao Cheng ◽  
Ke Qin Yan

Mechanics properties of lime- fly ash stabilized soil are investigated. First, the chemical composition of fly ash are analyzed by spectral analysis test. Compaction experiments of all mix proportion projects are carried out in different water conditions to obtain the optimum water contents. Then the optimum mix proportion is obtained by the unconfined compressive strength and the compression rebound modulus test. Finally, the pavement structures design for a highway of lime- fly ash stabilized soil road sub-base is done. By the comparison, a conclusion can be drawn that lime-fly ash stabilized soil is suitable for flexible pavement or semi-rigid pavement because of its good strength and rigidity which can effectively reduce thickness of the lower pavement and basic deflection.


2018 ◽  
Vol 162 ◽  
pp. 01007
Author(s):  
Zeena Samueel ◽  
Hussein Karim ◽  
Mohammed Mohammed

In many road construction projects, if weak soil exists, then uncontrollable settlement and critical load carrying capacity are major difficult problems to the safety and serviceability of roads in these areas. Thus ground improvement is essential to achieve the required level of performance. The paper presents results of the tests of four categories. First category was performed on saturated soft bed of clay without any treatment, the second category shed light on the improvement achieved in loading carrying capacity and settlement as a result of reinforcing with conventional sand columns at area replacement ratio = 0.196. The third set investigates the bed reinforced by sand columns stabilized with dry silica fume at different percentages (3, 5 and 7%) and the fourth set investigates the behavior of sand columns treated with slurry silica fume at two percentages (10 and 12%). All sand columns models were constructed at (R.D= 60%). Model tests were performed on bed of saturated soil prepared at undrained shear strength between 16-20 kPa for all models. For all cases, the model test was loaded gradually by stress increments up to failure. Stress deformation measurements are recorded and analyzed in terms of bearing improvement ratio and settlement reduction ratio. Optimum results were indicated from soil treated with sand columns stabilized with 7% dry silica fume at medium state reflecting the highest bearing improvement ratio (3.04) and the settlement reduction ratio (0.09) after 7 days curing. While soil treated with sand columns stabilized with 10% slurry silica fume provided higher bearing improvement ratio 3.13 with lower settlement reduction ratio of 0.57 after 7-days curing.


This paper discusses the Ultimate Bearing Capacity of a stabilized soil by using the fly ash, stone dust and rubber powder for design of a pavement. This paper will help in utilization of locally available waste materials to reuse in the subbase and subgrade layers of pavement. Rubber powder is a waste byproduct generated from the recycling of tires, and is not so easy for degradable, and hence leads to release of harmful gases when it tends to burn. Stone dust is a locally available waste generated product from quarries. The generation of stone dust is increasing day to day in large quantity. The huge quantity of stone dust storage amount will affect the quality of soil. Fly ash is waste combusted coal ash powder generated from the steamers of coal boilers with the burning of fuel gases together. In the sub grade layer the soil is mixed in different proportions with stone dust for hard foundation. In the sub base layer the soil is stabilized with the combination of rubber powder and fly ash. When the rubber powder and fly ash, mixed with water for compaction generates a bond between the soil particles to settle the air fields. In this paper various percentages of rubber powder, stone dust and fly ash with different samples for pavement is layered, and after that plate load test is conducted upon it.


Author(s):  
Andi Herius ◽  
Indrayani Indrayani Indrayani ◽  
Arfan Hasan ◽  
Ahmad Mirza

Some road construction projects use petrasoil additive to increase soil stabilization, one of then is the Improvement of Tabarfane-Hokmar (Chemical Petrasoil) Road Project in Aru Selatan Timur District, Aru Islands. To obtain the influence of petrasoil aditive material as soil stabilization in swamp areas, a research is needed. petrasoil additives that powder shape are dissolved in water with 3 variations, namely 500 liters, 750 liters, and 1000 liters of water. Tests which carried out include compaction testing, index properties, and CBR. The results showed that the addition of petrasoil mixture with water without being combined with other added ingredients could lead to increasingly unstable soil conditions where the soil water content increased and the dry weight of the soil diminished, meaning that soil density decreases, and the CBR value of soil decreases.


Sign in / Sign up

Export Citation Format

Share Document