Effects of Nitrogen Partial Pressures During RF Magnetron Sputtering on the Crystal Structure and Growth Rate of c-BN Films

2014 ◽  
Vol 52 (6) ◽  
pp. 439-443 ◽  
Author(s):  
Se hoon Jeong ◽  
Joon hang Lee ◽  
Kwang min Lee
2013 ◽  
Vol 663 ◽  
pp. 409-412
Author(s):  
Tai Long Gui ◽  
Si Da Jiang ◽  
Chun Cheng Ban ◽  
Jia Qing Liu

AlN dielectric thin films were deposited on N type Si(100) substrate by reactive radio frequency magnetron sputtering that directly bombardment AlN target under different sputtering-power and total pressure. The crystal structure,composition,surface and refractive index of the thin films were studied by XRD, SEM, AFM and elliptical polarization instrument. The results show that the surface and refractive of the thin films strongly depends on the sputtering-power and total pressure,the good uniformity and smoothness is found at 230 W, Ar flow ratio 5.0 LAr/sccm, substrate temperature 100°Cand 1.2 Pa. The crystal structure of the as-deposited thin-films is amorphous,then it transforms from blende structure to wurtzite structure as the rapid thermal annealing(RTA) temperature changes from 600 to 1200°C. The refractive index also increases with the RTA temperature it is increasing significantly from 800 to 1000°C.


1997 ◽  
Vol 475 ◽  
Author(s):  
Yong-Jin Song ◽  
Byung-Il Lee ◽  
Seung-Ki Joo

ABSTRACT[Cu(20Å)/NiFe(7Å)/Ni(6Å)/NiFe(7Å)]10Cu(50Å) multilayers were deposited on 4 ° tilt-cut Si(lll) using 3-gun rf magnetron sputtering system. An in-plane uniaxial magnetic anisotropy was found and the uniaxial magnetic anisotropy constant was about 3×104 erg/cm3. The multilayers on non tilt-cut Si(lll) with Cu underlayer did not show any anisotropy. The crystal structure of the multilayer on 4 ° tilt-cut Si(111) was studied using TEM work and the magnetic anisotropy is originated from the growth of (110) preferred orientation of the multilayer. When other material such as Ni or NiFe was used as an underlayer for the multilayer, the magnetic anisotropy disappeared and the crystal structure was (111). The multilayer without underlayer did not show any magnetic anisotropy either. It is thought that Cu underlayer was grown with (110) orientation on 4 ° tilt-cut Si(111) through the ledges in Si wafer and worked as a template for the growth of the multilayer.


2019 ◽  
Vol 33 (28) ◽  
pp. 1950349 ◽  
Author(s):  
Pengfei Guo ◽  
Caijuan Liu ◽  
Junhui Liu ◽  
Ruoping Li ◽  
Mingju Huang

In order to obtain a material with high solar modulation ability [Formula: see text] and crystalline quality, [Formula: see text] films were prepared on quartz glass substrates using RF magnetron sputtering under various oxygen partial pressures. Their phase, surface, transmittance, and film sheet resistance properties were analyzed. As the oxygen partial pressure increased, the luminous transmittance [Formula: see text] of the film increased to as high as 55.6%, while the [Formula: see text] first increased to a maximum of 10.8% and then decreased. This paper is a meaningful aid in the application of [Formula: see text] films to smart windows.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
S. Subbarayudu ◽  
V. Madhavi ◽  
S. Uthanna

Molybdenum oxide (MoO3) films were deposited on glass and silicon substrates held at temperature 473 K by RF magnetron sputtering of molybdenum target at various oxygen partial pressures in the range 8×10-5–8×10-4 mbar. The deposited MoO3 films were characterized for their chemical composition, crystallographic structure, surface morphology, chemical binding configuration, and optical properties. The films formed at oxygen partial pressure of 4×10-4 mbar were nearly stoichiometric and nanocrystalline MoO3 with crystallite size of 27 nm. The Fourier transform infrared spectrum of the films formed at 4×10-4 mbar exhibited the characteristics vibrational bands of MoO3. The optical band gap of the films increased from 3.11 to 3.28 eV, and the refractive index increased from 2.04 to 2.16 with the increase of oxygen partial pressure from 8×10-5 to 8×10-4 mbar, respectively. The electrochromic performance of MoO3 films formed on ITO coated glass substrates was studied and achieved the optical modulation of about 13% with color efficiency of about 20 cm2/C.


2006 ◽  
Vol 320 ◽  
pp. 95-98 ◽  
Author(s):  
Yuki Itoh ◽  
Kenichi Wakisaka ◽  
Masashi Satoh ◽  
Shinzo Yoshikado

Thin-film heaters made of molybdenum silicide (MoSi2) were fabricated by RF magnetron sputtering, and the heating characteristics of these heaters in a high vacuum were evaluated. The crystal structure of thin-film was hexagonal contrary to the tetragonal one of the target. MoSi2 thin-film heaters deposited outside an alumina crucible showed almost linear resistance-temperature (R-T ) characteristics. However, resistance decreased due to repeated heatings. The heaters generated almost no contamination in vacuum. The temperature of the crucible reached 1000°C at an electric power of 190 W.


Sign in / Sign up

Export Citation Format

Share Document