scholarly journals CREATING AND MAINTAINING DIGITAL PLANS FOR THE CONSTRUCTION OF MINING ENTERPRISES IN THE KEMEROVO REGION

2021 ◽  
Vol 1 ◽  
pp. 25-34
Author(s):  
Anatoly G. Nevolin ◽  
Denis B. Novoselov

Currently, in the design of large industrial enterprises, modern building information models (BIM) are being introduced and further used at the construction site. The construction industry is transitioning to digitalization of information modeling processes using spatial data and electronic document management. Therefore, it is proposed to use unmanned aerial vehicles (UAVs) and terrestrial laser scanners more efficiently for geodetic monitoring of the construction of industrial facilities of mining enterprises. With the systematic monitoring of construction, a full-fledged master plan is created, which reflects all deviations from the project, including works that were not provided for in the project documentation. It is known that using UAVs to collect spatial data, it is possible to control earthworks, pile fields, foundations, temporary roads and landscaping. Structures such as metal and reinforced concrete columns, trusses, beams, technological equipment, complex above-ground pipelines and facades are advisable to be monitored using a ground-based laser scanner. All the data obtained during geodetic monitoring can be combined in a single project and jointly used for a comprehensive solution of various applied engineering problems both in the process of monitoring buildings and structures being erected, and during their operation.

Author(s):  
J.-F. Hullo

We propose a complete methodology for the fine registration and referencing of kilo-station networks of terrestrial laser scanner data currently used for many valuable purposes such as 3D as-built reconstruction of Building Information Models (BIM) or industrial asbuilt mock-ups. This comprehensive target-based process aims to achieve the global tolerance below a few centimetres across a 3D network including more than 1,000 laser stations spread over 10 floors. This procedure is particularly valuable for 3D networks of indoor congested environments. In situ, the use of terrestrial laser scanners, the layout of the targets and the set-up of a topographic control network should comply with the expert methods specific to surveyors. Using parametric and reduced Gauss-Helmert models, the network is expressed as a set of functional constraints with a related stochastic model. During the post-processing phase inspired by geodesy methods, a robust cost function is minimised. At the scale of such a data set, the complexity of the 3D network is beyond comprehension. The surveyor, even an expert, must be supported, in his analysis, by digital and visual indicators. In addition to the standard indicators used for the adjustment methods, including Baarda’s reliability, we introduce spectral analysis tools of graph theory for identifying different types of errors or a lack of robustness of the system as well as <i>in fine</i> documenting the quality of the registration.


Author(s):  
J.-F. Hullo

We propose a complete methodology for the fine registration and referencing of kilo-station networks of terrestrial laser scanner data currently used for many valuable purposes such as 3D as-built reconstruction of Building Information Models (BIM) or industrial asbuilt mock-ups. This comprehensive target-based process aims to achieve the global tolerance below a few centimetres across a 3D network including more than 1,000 laser stations spread over 10 floors. This procedure is particularly valuable for 3D networks of indoor congested environments. In situ, the use of terrestrial laser scanners, the layout of the targets and the set-up of a topographic control network should comply with the expert methods specific to surveyors. Using parametric and reduced Gauss-Helmert models, the network is expressed as a set of functional constraints with a related stochastic model. During the post-processing phase inspired by geodesy methods, a robust cost function is minimised. At the scale of such a data set, the complexity of the 3D network is beyond comprehension. The surveyor, even an expert, must be supported, in his analysis, by digital and visual indicators. In addition to the standard indicators used for the adjustment methods, including Baarda’s reliability, we introduce spectral analysis tools of graph theory for identifying different types of errors or a lack of robustness of the system as well as &lt;i&gt;in fine&lt;/i&gt; documenting the quality of the registration.


2019 ◽  
Vol 18 (4) ◽  
pp. 923-940
Author(s):  
Abdul Rahman Ahsan Usmani ◽  
Abdalrahman Elshafey ◽  
Masoud Gheisari ◽  
Changsaar Chai ◽  
Eeydzah Binti Aminudin ◽  
...  

Purpose Three dimensional (3 D) laser scanner surveying is widely used in many fields, such as agriculture, mining and heritage documentation and can be of great benefit for as-built documentation in construction and facility management domains. However, there is lack of applied research and use cases integrating 3 D laser scanner surveying with building information modeling (BIM) for existing facilities in Malaysia. This study aims to develop a scan to as-built BIM workflow to use 3 D laser scanner surveying and create as-built building information models of an existing complex facility in Malaysia. Design/methodology/approach A case study approach was followed to develop a scan to as-built BIM workflow through four main steps: 3 D laser scanning, data preprocessing, data registration and building information modeling. Findings This case study proposes a comprehensive scan to as-built BIM workflow which illustrates all the required steps to create a precise 3 D as-built building information model from scans. This workflow was successfully implemented to the Eco-Home facility at the Universiti Teknologi Malaysia. Originality/value Scan to as-built BIM is a digital alternative to manual and tedious process of documentation of as-built condition of a facility and provides a detail process using laser scans to create as-built building information models of facilities.


The variants of the division of the life cycle of a construction object at the stages adopted in the territory of the Russian Federation, as well as in other countries are considered. Particular attention is paid to the exemplary work plan – "RIBA plan of work", used in England. A feature of this document is its applicability in the information modeling of construction projects (Building information Modeling – BIM). The article presents a structural and logical scheme of the life cycle of a building object and a list of works that are performed using information modeling technology at various stages of the life cycle of the building. The place of information models in the process of determining the service life of the building is shown. On the basis of the considered sources of information, promising directions for the development of the life cycle management system of the construction object (Life Cycle Management) and the development of the regulatory framework in order to improve the use of information modeling in construction are given.


Author(s):  
Vadim V. Krivorotov ◽  
Alexei V. Kalina ◽  
Sergei E. Erypalov ◽  
Maxim V. Aksenov

Improving the competitiveness of Russian industrial enterprises (including the construction industry) is a priority task at the current stage of development of the country’s economy. The purpose of this study is to develop methodological tools that would allow building strategic plans for the development of a construction company using a dynamic method for assessing its competitiveness. The hypothesis is that the target parameters of the development of a construction company, which take into account the influence of competitive factors, inevitably increase its level. This article provides an analytical review of existing methods for assessing the competitiveness of enterprises, identifies their advantages and disadvantages. The authors have chosen the dynamic approach to assessing the competitiveness of an enterprise; they propose certain aspects of its modernization, taking into account the specifics of construction production; the main indicators and algorithms used in this approach are presented. The competitiveness of the PIK group, Russia’s largest construction company, was evaluated in comparison with the Swedish development company Skanska Group, which is successful on the world market. The most problematic performance indicators of the Russian company that have a negative impact on its competitiveness are identified. Modeling of the dependence of the company’s competitiveness level on these indicators is performed. The results show that the key tool for eliminating these shortcomings can be the introduction of integrated information modeling based on big data for the entire development cycle: building information modeling — BIM (Building Information Modeling), augmented and virtual reality (AR/VR) technologies, and customer relationship management systems (CRM), among some others. The authors show how the key performance indicators of the company change after the introduction of integrated information modeling of the entire development cycle and what the forecast level of the company’s competitiveness can be expected at the end of 2020.


Vestnik MGSU ◽  
2020 ◽  
pp. 867-906 ◽  
Author(s):  
Vladimir A. Volkodav ◽  
Ivan A. Volkodav

Abstract Introduction. Various building information classification systems are used internationally; their critical analysis makes it possible to highlight basic requirements applicable to the Russian classifier and substantiate its structure and composition. Materials and methods. Modern international building information classification systems, such as OmniClass (USA), Uniclass 2015 (UK), CCS (Denmark), and CoClass (Sweden), are considered in the article. Their structure, composition, methodological fundamentals are analyzed. In addition to international classification systems, Russian construction information classifiers are analyzed. Results. The structure of a building information classifier has been developed and tailored to the needs of BIM (building information modeling) and national regulatory and technical requirements. The classifier’s structure complies with the one recommended by ISO 12006-2:2015. Its composition has regard to the requirements that apply to the aggregation and unification of Russian classifiers, and it also benefits from the classifiers developed for and used by the construction industry. The proposed building information classifier has four basic categories and 21 basic classes. Conclusions. The proposed structure and composition of a building information classifier represent a unified and universal tool for communicating building information or presenting it in the standardized format in the consolidated information space designated for information models needed to manage life cycles of major construction projects.


Author(s):  
M. Lo Brutto ◽  
E. Iuculano ◽  
P. Lo Giudice

Abstract. The preservation of historic buildings can often be particularly difficult due to the lack of detailed information about architectural features, construction details, etc.. However, in recent years considerable technological innovation in the field of Architecture, Engineering, and Construction (AEC) has been achieved by the Building Information Modeling (BIM) process. BIM was developed as a methodology used mainly for new construction but, given its considerable potential, this approach can also be successfully used for existing buildings, especially for buildings of historical and architectural value. In this case, it is more properly referred to as Historic – or Heritage – Building Information Modeling (HBIM). In the HBIM process, it is essential to precede the parametric modeling phase of the building with a detailed 3D survey that allows the acquisition of all geometric information. This methodology, called Scan-to-BIM, involves the use of 3D survey techniques for the production of point clouds as a geometric “database” for parametric modeling. The Scan-to-BIM approach can have several issues relating to the complexity of the survey. The work aims to apply the Scan-to-BIM approach to the survey and modeling of a historical and architectural valuable building to test a survey method, based on integrating different techniques (topography, photogrammetry and laser scanning), that improves the data acquisition phase. The “Real Cantina Borbonica” (Cellar of Royal House of Bourbon) in Partinico (Sicily, Italy) was chosen as a case study. The work has allowed achieving the HBIM of the “Real Cantina Borbonica” and testing an approach based exclusively on a topographic constraint to merge in the same reference system all the survey data (laser scanner and photogrammetric point clouds).


Author(s):  
Lisa Lenz ◽  
Kai Christian Weist ◽  
Marvin Hoepfner ◽  
Panagiotis Spyridis ◽  
Mike Gralla

AbstractIn the last few years, particular focus has been devoted to the life cycle performance of fastening systems, which is reflected in increasing numbers of publications, standards and large-scale research efforts. Simultaneously, experience shows that in many cases, where fastening systems are implemented – such as industrial facilities – the design of fasteners is governed by fatigue loading under dynamic characteristics. In order to perform an adequate design and to specify the most efficient and appropriate fastening product, the engineer needs to access and process a broad range of technical and commercial information. Building information modelling (BIM), as a data management method in the construction industry, can supply such information and accommodate a comprehensive design and specification process. Furthermore, the application of BIM-based processes, such as the generation of a BIM-model, allows to use the important information for the construction as well as the life cycle management with different actions and time dependencies of the asset and its components. As a consequence, the BIM model offers the potential to correlate different data relevant for achieving the goals of the respective application, in order to ensure a more effective and correct design of the fastening. This paper demonstrates such a BIM-based design framework for an Industry 4.0 case, and in particular, the installation of a factory robot through post-installed anchors under fatigue-relevant loading in concrete.


Author(s):  
H. Macher ◽  
M. Boudhaim ◽  
P. Grussenmeyer ◽  
M. Siroux ◽  
T. Landes

<p><strong>Abstract.</strong> In the context of building renovation, infrared (IR) cameras are widely used to perform the energy audit of buildings. They allow analysing precisely the energetic performances of existing buildings and thermal analyses represent a key step for the reduction of energy consumption. They are also used to assess the thermal comfort of people living or working in a building. Building Information Models (BIM) are widespread to plan the rehabilitation of existing buildings and laser scanning is now commonly used to capture the geometry of buildings for as-built BIM creation. The combination of thermographic and geometric data presents a high number and variety of applications (Lagüela and Díaz-Vilariño, 2016). However, geometric and thermal information are generally acquired separately by different building stakeholders and thermal analyses are performed with independence of geometry. In this paper, the combination of thermal and geometric information is investigated for indoor of buildings. The aim of the project is to create 3D thermographic point clouds based on data acquired by a laser scanner and a thermal camera. Based on these point clouds, BIM models might be enriched with thermal information through the scan-to-BIM process.</p>


2016 ◽  
Vol 11 (2) ◽  
pp. 116-130 ◽  
Author(s):  
Karen Kensek ◽  
Ye Ding ◽  
Travis Longcore

Green buildings should respect nature and endeavor to mitigate harmful effects to the environment and occupants. This is often interpreted as creating sustainable sites, consuming less energy and water, reusing materials, and providing excellent indoor environmental quality. Environmentally friendly buildings should also consider literally the impact that they have on birds, millions of them. A major factor in bird collisions with buildings is the choice of building materials. These choices are usually made by the architect who may not be aware of the issue or may be looking for guidance from certification programs such as LEED. As a proof of concept for an educational tool, we developed a software-assisted approach to characterize whether a proposed building design would earn a point for the LEED Pilot Credit 55: Avoiding Bird Collisions. Using the visual programming language Dynamo with the common building information modeling software Revit, we automated the assessment of designs. The approach depends on parameters that incorporate assessments of bird threat for façade materials, analyzes building geometry relative to materials, and processes user input on building operation to produce the assessment.


Sign in / Sign up

Export Citation Format

Share Document