scholarly journals Colorimetric detection on paper analytical device using machine learning

Author(s):  
Bidur Khanal ◽  
Pravin Pokhrel ◽  
Bishesh Khanal ◽  
Basant Giri

Paper-based analytical devices (PADs) employing colorimetric detection and smartphone images have gained wider acceptance in a variety of measurement applications. The PADs are primarily meant to be used in field settings where assay and imaging conditions greatly vary resulting in less accurate results. Recently, machine learning (ML) assisted models have been used in image analysis. We evaluated a combinations of four ML models - logistic regression, support vector machine, random forest, and artificial neural network, and three image color spaces - RGB, HSV, and LAB for their ability to accurately predict analyte concentrations. We used images of PADs taken at varying lighting conditions, with different cameras, and users for food color and enzyme inhibition assays to create training and test datasets. Prediction accuracy was higher for food color than enzyme inhibition assays in most of the ML model and colorspace combinations. All models better predicted coarse level classification than fine grained concentration labels. ML models using sample color along with a reference color increased the models’ ability in predicting the result in which the reference color may have partially factored out the variation in ambient assay and imaging conditions. The best concentration label prediction accuracy obtained for food color was 0.966 when using ANN model and LAB colorspace. The accuracy for enzyme inhibition assay was 0.908 when using SVM model and LAB colorspace. Appropriate model and colorspace combinations can be useful to analyze large numbers of samples on PADs as a powerful low-cost quick field-testing tool.

2017 ◽  
Author(s):  
Manato Akiyama ◽  
Kengo Sato ◽  
Yasubumi Sakakibara

AbstractMotivation: A popular approach for predicting RNA secondary structure is the thermodynamic nearest neighbor model that finds a thermodynamically most stable secondary structure with the minimum free energy (MFE). For further improvement, an alternative approach that is based on machine learning techniques has been developed. The machine learning based approach can employ a fine-grained model that includes much richer feature representations with the ability to fit the training data. Although a machine learning based fine-grained model achieved extremely high performance in prediction accuracy, a possibility of the risk of overfitting for such model has been reported.Results: In this paper, we propose a novel algorithm for RNA secondary structure prediction that integrates the thermodynamic approach and the machine learning based weighted approach. Ourfine-grained model combines the experimentally determined thermodynamic parameters with a large number of scoring parameters for detailed contexts of features that are trained by the structured support vector machine (SSVM) with the ℓ1 regularization to avoid overfitting. Our benchmark shows that our algorithm achieves the best prediction accuracy compared with existing methods, and heavy overfitting cannot be observed.Availability: The implementation of our algorithm is available at https://github.com/keio-bioinformatics/mxfold.Contact:[email protected]


2018 ◽  
Vol 16 (06) ◽  
pp. 1840025 ◽  
Author(s):  
Manato Akiyama ◽  
Kengo Sato ◽  
Yasubumi Sakakibara

A popular approach for predicting RNA secondary structure is the thermodynamic nearest-neighbor model that finds a thermodynamically most stable secondary structure with minimum free energy (MFE). For further improvement, an alternative approach that is based on machine learning techniques has been developed. The machine learning-based approach can employ a fine-grained model that includes much richer feature representations with the ability to fit the training data. Although a machine learning-based fine-grained model achieved extremely high performance in prediction accuracy, a possibility of the risk of overfitting for such a model has been reported. In this paper, we propose a novel algorithm for RNA secondary structure prediction that integrates the thermodynamic approach and the machine learning-based weighted approach. Our fine-grained model combines the experimentally determined thermodynamic parameters with a large number of scoring parameters for detailed contexts of features that are trained by the structured support vector machine (SSVM) with the [Formula: see text] regularization to avoid overfitting. Our benchmark shows that our algorithm achieves the best prediction accuracy compared with existing methods, and heavy overfitting cannot be observed. The implementation of our algorithm is available at https://github.com/keio-bioinformatics/mxfold .


2021 ◽  
Vol 94 (1120) ◽  
pp. 20200026
Author(s):  
Laia Humbert-Vidan ◽  
Vinod Patel ◽  
Ilkay Oksuz ◽  
Andrew Peter King ◽  
Teresa Guerrero Urbano

Objectives: Mandible osteoradionecrosis (ORN) is one of the most severe toxicities in patients with head and neck cancer (HNC) undergoing radiotherapy (RT). The existing literature focuses on the correlation of mandible ORN and clinical and dosimetric factors. This study proposes the use of machine learning (ML) methods as prediction models for mandible ORN incidence. Methods: A total of 96 patients (ORN incidence ratio of 1:1) treated between 2011 and 2015 were selected from the local HNC toxicity database. Demographic, clinical and dosimetric data (based on the mandible dose–volume histogram) were considered as model variables. Prediction accuracy (measured using a stratified fivefold nested cross-validation), sensitivity, specificity, precision and negative predictive value were used to evaluate the prediction performance of a multivariate logistic regression (LR) model, a support vector machine (SVM) model, a random forest (RF) model, an adaptive boosting (AdaBoost) model and an artificial neural network (ANN) model. The different models were compared based on their prediction accuracy and using the McNemar’s hypothesis test. Results: The ANN model (77% accuracy), closely followed by the SVM (76%), AdaBoost (75%) and LR (75%) models, showed the highest overall prediction accuracy. The RF model (71%) showed the lowest prediction accuracy. However, based on the McNemar’s test applied to all model pair combinations, no statistically significant difference between the models was found. Conclusion: Based on our results, we encourage the use of ML-based prediction models for ORN incidence as has already been done for other HNC toxicity end points. Advances in knowledge: This research opens a new path towards personalised RT for HNC using ML to predict mandible ORN incidence.


Author(s):  
Anik Das ◽  
Mohamed M. Ahmed

Accurate lane-change prediction information in real time is essential to safely operate Autonomous Vehicles (AVs) on the roadways, especially at the early stage of AVs deployment, where there will be an interaction between AVs and human-driven vehicles. This study proposed reliable lane-change prediction models considering features from vehicle kinematics, machine vision, driver, and roadway geometric characteristics using the trajectory-level SHRP2 Naturalistic Driving Study and Roadway Information Database. Several machine learning algorithms were trained, validated, tested, and comparatively analyzed including, Classification And Regression Trees (CART), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost), Support Vector Machine (SVM), K Nearest Neighbor (KNN), and Naïve Bayes (NB) based on six different sets of features. In each feature set, relevant features were extracted through a wrapper-based algorithm named Boruta. The results showed that the XGBoost model outperformed all other models in relation to its highest overall prediction accuracy (97%) and F1-score (95.5%) considering all features. However, the highest overall prediction accuracy of 97.3% and F1-score of 95.9% were observed in the XGBoost model based on vehicle kinematics features. Moreover, it was found that XGBoost was the only model that achieved a reliable and balanced prediction performance across all six feature sets. Furthermore, a simplified XGBoost model was developed for each feature set considering the practical implementation of the model. The proposed prediction model could help in trajectory planning for AVs and could be used to develop more reliable advanced driver assistance systems (ADAS) in a cooperative connected and automated vehicle environment.


Author(s):  
Jonas Austerjost ◽  
Robert Söldner ◽  
Christoffer Edlund ◽  
Johan Trygg ◽  
David Pollard ◽  
...  

Machine vision is a powerful technology that has become increasingly popular and accurate during the last decade due to rapid advances in the field of machine learning. The majority of machine vision applications are currently found in consumer electronics, automotive applications, and quality control, yet the potential for bioprocessing applications is tremendous. For instance, detecting and controlling foam emergence is important for all upstream bioprocesses, but the lack of robust foam sensing often leads to batch failures from foam-outs or overaddition of antifoam agents. Here, we report a new low-cost, flexible, and reliable foam sensor concept for bioreactor applications. The concept applies convolutional neural networks (CNNs), a state-of-the-art machine learning system for image processing. The implemented method shows high accuracy for both binary foam detection (foam/no foam) and fine-grained classification of foam levels.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fu-Qing Cui ◽  
Wei Zhang ◽  
Zhi-Yun Liu ◽  
Wei Wang ◽  
Jian-bing Chen ◽  
...  

The comprehensive understanding of the variation law of soil thermal conductivity is the prerequisite of design and construction of engineering applications in permafrost regions. Compared with the unfrozen soil, the specimen preparation and experimental procedures of frozen soil thermal conductivity testing are more complex and challengeable. In this work, considering for essentially multiphase and porous structural characteristic information reflection of unfrozen soil thermal conductivity, prediction models of frozen soil thermal conductivity using nonlinear regression and Support Vector Regression (SVR) methods have been developed. Thermal conductivity of multiple types of soil samples which are sampled from the Qinghai-Tibet Engineering Corridor (QTEC) are tested by the transient plane source (TPS) method. Correlations of thermal conductivity between unfrozen and frozen soil has been analyzed and recognized. Based on the measurement data of unfrozen soil thermal conductivity, the prediction models of frozen soil thermal conductivity for 7 typical soils in the QTEC are proposed. To further facilitate engineering applications, the prediction models of two soil categories (coarse and fine-grained soil) have also been proposed. The results demonstrate that, compared with nonideal prediction accuracy of using water content and dry density as the fitting parameter, the ternary fitting model has a higher thermal conductivity prediction accuracy for 7 types of frozen soils (more than 98% of the soil specimens’ relative error are within 20%). The SVR model can further improve the frozen soil thermal conductivity prediction accuracy and more than 98% of the soil specimens’ relative error are within 15%. For coarse and fine-grained soil categories, the above two models still have reliable prediction accuracy and determine coefficient (R2) ranges from 0.8 to 0.91, which validates the applicability for small sample soils. This study provides feasible prediction models for frozen soil thermal conductivity and guidelines of the thermal design and freeze-thaw damage prevention for engineering structures in cold regions.


Author(s):  
Pratyush Kaware

In this paper a cost-effective sensor has been implemented to read finger bend signals, by attaching the sensor to a finger, so as to classify them based on the degree of bent as well as the joint about which the finger was being bent. This was done by testing with various machine learning algorithms to get the most accurate and consistent classifier. Finally, we found that Support Vector Machine was the best algorithm suited to classify our data, using we were able predict live state of a finger, i.e., the degree of bent and the joints involved. The live voltage values from the sensor were transmitted using a NodeMCU micro-controller which were converted to digital and uploaded on a database for analysis.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi139-vi139
Author(s):  
Jan Lost ◽  
Tej Verma ◽  
Niklas Tillmanns ◽  
W R Brim ◽  
Harry Subramanian ◽  
...  

Abstract PURPOSE Identifying molecular subtypes in gliomas has prognostic and therapeutic value, traditionally after invasive neurosurgical tumor resection or biopsy. Recent advances using artificial intelligence (AI) show promise in using pre-therapy imaging for predicting molecular subtype. We performed a systematic review of recent literature on AI methods used to predict molecular subtypes of gliomas. METHODS Literature review conforming to PRSIMA guidelines was performed for publications prior to February 2021 using 4 databases: Ovid Embase, Ovid MEDLINE, Cochrane trials (CENTRAL), and Web of Science core-collection. Keywords included: artificial intelligence, machine learning, deep learning, radiomics, magnetic resonance imaging, glioma, and glioblastoma. Non-machine learning and non-human studies were excluded. Screening was performed using Covidence software. Bias analysis was done using TRIPOD guidelines. RESULTS 11,727 abstracts were retrieved. After applying initial screening exclusion criteria, 1,135 full text reviews were performed, with 82 papers remaining for data extraction. 57% used retrospective single center hospital data, 31.6% used TCIA and BRATS, and 11.4% analyzed multicenter hospital data. An average of 146 patients (range 34-462 patients) were included. Algorithms predicting IDH status comprised 51.8% of studies, MGMT 18.1%, and 1p19q 6.0%. Machine learning methods were used in 71.4%, deep learning in 27.4%, and 1.2% directly compared both methods. The most common algorithm for machine learning were support vector machine (43.3%), and for deep learning convolutional neural network (68.4%). Mean prediction accuracy was 76.6%. CONCLUSION Machine learning is the predominant method for image-based prediction of glioma molecular subtypes. Major limitations include limited datasets (60.2% with under 150 patients) and thus limited generalizability of findings. We recommend using larger annotated datasets for AI network training and testing in order to create more robust AI algorithms, which will provide better prediction accuracy to real world clinical datasets and provide tools that can be translated to clinical practice.


2020 ◽  
Author(s):  
Xiao Chen ◽  
Yi Xiong ◽  
Yinbo Liu ◽  
Yuqing Chen ◽  
Shoudong Bi ◽  
...  

Abstract Background: As one of the most common post-transcriptional modifications (PTCM) in RNA, 5-cytosine-methylation plays important roles in many biological functions such as RNA metabolism and cell fate decision. Through accurate identification of 5-methylcytosine (m5C) sites on RNA, researchers can better understand the exact role of 5-cytosine-methylation in these biological functions. In recent years, computational methods of predicting m5C sites have attracted lots of interests because of its efficiency and low-cost. However, both the accuracy and efficiency of these methods are not satisfactory yet and need further improvement. Results: In this work, we have developed a new computational method, m5CPred-SVM, to identify m5C sites in three species, H. sapiens, M. musculus and A. thaliana. To build this model, we first collected benchmark datasets following three recently published methods. Then, six types of sequence-based features were generated based on RNA segments and the sequential forward feature selection strategy was used to obtain the optimal feature subset. After that, the performance of models based on different learning algorithms were compared, and the model based on the support vector machine provided the highest prediction accuracy. Finally, our proposed method, m5CPred-SVM was compared with several existing methods, and the result showed that m5CPred-SVM offered substantially higher prediction accuracy than previously published methods. It is expected that our method, m5CPred-SVM, can become a useful tool for accurate identification of m5C sites.Conclusion: In this study, by introducing position-specific propensity related features, we built a new model, m5CPred-SVM, to predict RNA m5C sites of three different species. The result shows that our model outperformed the existing state-of-art models. Our model is available for users through a web server at http://zhulab.ahu.edu.cn/m5CPred-SVM.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Paul Litvak ◽  
Jeevan Medikonda ◽  
Girish Menon ◽  
Pitchaiah Mandava

Background: Patients suffering from subarachnoid hemorrhage (SAH) have poor long-term outcomes. There are predictive models for ischemic and hemorrhagic stroke. However, there is paucity of models for SAH. Machine learning concepts were applied to build multi-stage Neural Networks (NN), Support Vector Machines (SVM) and Keras/Tensor Flow models to predict SAH outcomes. Methods: A database of ~800 aneurysmal SAH patients from Kasturba Medical College was utilized. Baseline variables of World Federation of Neurosurgeons 5-point scale (WFNS 1-5), age, gender, and presence/absence of hypertension and diabetes were considered in Stage 1. Stage 2 included all Stage 1 variables along with presence/absence of radiologic signs vasospasm and ischemia. Stage 3 includes earlier 2 stages and discharge Glasgow Outcome Scale (GOS 1-5). GOS at 3 months was predicted using 2-layer NN/SVM/Keras-TensorFlow models on the five point categorical scale as well as dichotomized to dead/alive and favorable (GOS 4-5) or unfavorable (GOS 1-3). Prediction accuracy of models was compared to the recorded GOS. Results: Prediction accuracy shown as percentages (See Table) for all three stages was similar for SVM, NN and Keras/TensorFlow models. Accuracy was remarkably higher with dichotomization compared to the complete five point GOS categorical scale. Conclusions: SVM, NN, and Keras-TensorFlow based machine learning models can be used to predict SAH outcomes to a high degree of accuracy. These powerful predictive models can be used to prognosticate and select patients into trials.


Sign in / Sign up

Export Citation Format

Share Document