scholarly journals Theoretical evaluation of equilibrium constant for boron isotopes exchange between boric acid and borate in pure and saline water

Author(s):  
Amin Alibakhshi ◽  
Bernd Hartke ◽  
Julien Steffen ◽  
Carlos Pinilla

Evaluation of the equilibrium constant of boron isotope fractionation between boric acid and borate (k3−4) in water is of high geochemical importance, due to its contribution in reconstruction of ancient seawater pH and atmospheric CO2. As a result, precise evaluation of k3−4 has been the subject of numerous studies, yielding diverse and controversial results. In the present study, employing three different rigorous and high-precision theoretical approaches, we provide a reliable estimation of k3−4 which is a value between 1.028 to 1.030 for both pure and saline water. Within the context of present study, we also propose partial normal mode analysis, Boltzmann weighted averaging and a revision on the Bigeleisen and Mayer method which allow a more rigorous evaluation of isotope fraction in solution and can be used for studying other isotopic systems as well.

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258818
Author(s):  
Byung Ho Lee ◽  
Soon Woo Park ◽  
Soojin Jo ◽  
Moon Ki Kim

Large-scale conformational changes are essential for proteins to function properly. Given that these transition events rarely occur, however, it is challenging to comprehend their underlying mechanisms through experimental and theoretical approaches. In this study, we propose a new computational methodology called internal coordinate normal mode-guided elastic network interpolation (ICONGENI) to predict conformational transition pathways in proteins. Its basic approach is to sample intermediate conformations by interpolating the interatomic distance between two end-point conformations with the degrees of freedom constrained by the low-frequency dynamics afforded by normal mode analysis in internal coordinates. For validation of ICONGENI, it is applied to proteins that undergo open-closed transitions, and the simulation results (i.e., simulated transition pathways) are compared with those of another technique, to demonstrate that ICONGENI can explore highly reliable pathways in terms of thermal and chemical stability. Furthermore, we generate an ensemble of transition pathways through ICONGENI and investigate the possibility of using this method to reveal the transition mechanisms even when there are unknown metastable states on rough energy landscapes.


2019 ◽  
Author(s):  
David Wright ◽  
Fouad Husseini ◽  
Shunzhou Wan ◽  
Christophe Meyer ◽  
Herman Van Vlijmen ◽  
...  

<div>Here, we evaluate the performance of our range of ensemble simulation based binding free energy calculation protocols, called ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent) for use in fragment based drug design scenarios. ESMACS is designed to generate reproducible binding affinity predictions from the widely used molecular mechanics Poisson-Boltzmann surface area (MMPBSA) approach. We study ligands designed to target two binding pockets in the lactate dehydogenase A target protein, which vary in size, charge and binding mode. When comparing to experimental results, we obtain excellent statistical rankings across this highly diverse set of ligands. In addition, we investigate three approaches to account for entropic contributions not captured by standard MMPBSA calculations: (1) normal mode analysis, (2) weighted solvent accessible surface area (WSAS) and (3) variational entropy. </div>


2001 ◽  
Vol 15 (28n30) ◽  
pp. 3865-3868 ◽  
Author(s):  
H. MIYAOKA ◽  
T. KUZE ◽  
H. SANO ◽  
H. MORI ◽  
G. MIZUTANI ◽  
...  

We have obtained the Raman spectra of TiCl n (n= 2, 3, and 4). Assignments of the observed Raman bands were made by a normal mode analysis. The force constants were determined from the observed Raman band frequencies. We have found that the Ti-Cl stretching force constant increases as the oxidation number of the Ti species increases.


2020 ◽  
Vol 153 (21) ◽  
pp. 215103
Author(s):  
Alexander Klinger ◽  
Dominik Lindorfer ◽  
Frank Müh ◽  
Thomas Renger

2009 ◽  
Vol 60 (2) ◽  
pp. 169-173 ◽  
Author(s):  
Sayan K. Chakrabarti ◽  
Pulak Ranjan Giri ◽  
Kumar S. Gupta

1971 ◽  
Vol 5 (2) ◽  
pp. 239-263 ◽  
Author(s):  
Z. Sedláček

Small amplitude electrostatic oscillations in a cold plasma with continuously varying density have been investigated. The problem is the same as that treated by Barston (1964) but instead of his normal-mode analysis we employ the Laplace transform approach to solve the corresponding initial-value problem. We construct the Green function of the differential equation of the problem to show that there are branch-point singularities on the real axis of the complex frequency-plane, which correspond to the singularities of the Barston eigenmodes and which, asymptotically, give rise to non-collective oscillations with position-dependent frequency and damping proportional to negative powers of time. In addition we find an infinity of new singularities (simple poles) of the analytic continuation of the Green function into the lower half of the complex frequency-plane whose position is independent of the spatial co-ordinate so that they represent collective, exponentially damped modes of plasma oscillations. Thus, although there may be no discrete spectrum, in a more general sense a dispersion relation does exist but must be interpreted in the same way as in the case of Landau damping of hot plasma oscillations.


2016 ◽  
Vol 120 (33) ◽  
pp. 8276-8288 ◽  
Author(s):  
Xin-Qiu Yao ◽  
Lars Skjærven ◽  
Barry J. Grant

2015 ◽  
Vol 81 (6) ◽  
Author(s):  
Y. W. Hou ◽  
M. X. Chen ◽  
M. Y. Yu ◽  
B. Wu

The transient, growth and nonlinear saturation stages in the evolution of the electrostatic two-stream instabilities as described by the Vlasov–Poisson system are reconsidered by numerically following the evolution of the total wave energy of the plasma oscillations excited from (numerical) noise. Except for peculiarities related to the necessarily finite (even though very small) magnitude of the perturbations in the numerical simulation, the existence and initial growth properties of the instabilities from the numerical results are found to be consistent with those from linear normal mode analysis and the Penrose criteria. However, contradictory to the traditional point of view, the growth of instability before saturation is not always linear. The initial stage of the growth can exhibit fine structures that can be attributed to the harmonics of the excited plasma oscillations, whose wavelengths are determined by the system size and the numerical noise. As expected, saturation of the unstable oscillations is due to electron trapping when they reach sufficiently large amplitudes.


2013 ◽  
Vol 12 (08) ◽  
pp. 1341005 ◽  
Author(s):  
FÁTIMA PARDO-AVILA ◽  
LIN-TAI DA ◽  
YING WANG ◽  
XUHUI HUANG

RNA polymerase is the enzyme that synthesizes RNA during the transcription process. To understand its mechanism, structural studies have provided us pictures of the series of steps necessary to add a new nucleotide to the nascent RNA chain, the steps altogether known as the nucleotide addition cycle (NAC). However, these static snapshots do not provide dynamic information of these processes involved in NAC, such as the conformational changes of the protein and the atomistic details of the catalysis. Computational studies have made efforts to fill these knowledge gaps. In this review, we provide examples of different computational approaches that have improved our understanding of the transcription elongation process for RNA polymerase, such as normal mode analysis, molecular dynamic (MD) simulations, Markov state models (MSMs). We also point out some unsolved questions that could be addressed using computational tools in the future.


Sign in / Sign up

Export Citation Format

Share Document