scholarly journals Acacia Holosericea: An Invasive Species for Bio-char, Bio-oil, and Biogas Production

2019 ◽  
Vol 6 (2) ◽  
pp. 33 ◽  
Author(s):  
Md Sumon Reza ◽  
Ashfaq Ahmed ◽  
Wahyu Caesarendra ◽  
Muhammad S. Abu Bakar ◽  
Shahriar Shams ◽  
...  

To evaluate the possibilities for biofuel and bioenergy production Acacia Holosericea, which is an invasive plant available in Brunei Darussalam, was investigated. Proximate analysis of Acacia Holosericea shows that the moisture content, volatile matters, fixed carbon, and ash contents were 9.56%, 65.12%, 21.21%, and 3.91%, respectively. Ultimate analysis shows carbon, hydrogen, and nitrogen as 44.03%, 5.67%, and 0.25%, respectively. The thermogravimetric analysis (TGA) results have shown that maximum weight loss occurred for this biomass at 357 °C for pyrolysis and 287 °C for combustion conditions. Low moisture content (<10%), high hydrogen content, and higher heating value (about 18.13 MJ/kg) makes this species a potential biomass. The production of bio-char, bio-oil, and biogas from Acacia Holosericea was found 34.45%, 32.56%, 33.09% for 500 °C with a heating rate 5 °C/min and 25.81%, 37.61%, 36.58% with a heating rate 10 °C/min, respectively, in this research. From Fourier transform infrared (FTIR) spectroscopy it was shown that a strong C–H, C–O, and C=C bond exists in the bio-char of the sample.

2014 ◽  
Vol 695 ◽  
pp. 239-242
Author(s):  
K. Azduwin ◽  
Mohd Jamir Mohd Ridzuan ◽  
A.R. Mohamed ◽  
S.M. Hafis

Increasing demand of fossils fuel for many purposes has cause for the limited sources which lead to the finding for new alternative energy based on biomass because of its sustainable properties. Palm-pressed fibre (PPF) is the biomass waste from palm oil processing which has use minimally for boiler to generate heat. The pyrolysis of PPF in a fixed-bed reactor has the potential as an alternative for its conversion into bio-oil, bio-char and gas. The characterization of PPF where involves elemental analysis, proximate analysis, calorific analysis and component analysis. The pyrolysis of the PPF was performed in the fixed-bed reactor at temperature between 300 - 700 °C and heating rate in the range of 10-70 °C/min with constant flow of nitrogen at 100 cm3/min and 30 minutes hold time.The highest bio-oil yield produced was 44.98% at optimum temperature 500°C and heating rate 30°C/min. By analysis the bio-oil using Fourier transform infrared spectroscopy (FTIR), it was found to contains alkenes, ketones, polymeric hydroxyl compound, carboxylic acid, aldehyde and water.


FLORESTA ◽  
2018 ◽  
Vol 49 (1) ◽  
pp. 109
Author(s):  
Clarissa Gusmão Figueiró ◽  
Angélica de Cássia Oliveira Carneiro ◽  
Lucas De Freitas Fialho ◽  
Carlos Miguel Simões Da Silva ◽  
Letícia Costa Peres

Brazil is a large producer of sawmill wastes, commonly used to supply boilers and produce energy. In order to reduce unwanted characteristics of the material, thermochemical conversions through carbonization is an alternative. The aim of this study is to characterize the energetic proprieties of raw biomass and pyrolyzed biomass of sawmill residues. In order to analyze the environmental impact in the emission of pyrolysis gases, the behavior of gases during the thermic treatment was determined. Eucalyptus sp. and Pinus sp. residues slow pyrolysis was performed in an electric kiln, whose gases were conducted through a condensable gas recovery system and an online gas analyzer. The charcoal, bio-oil and non-condensable gases yields were estimated. The wood’s and charcoal’s proximate analysis (extractives, lignin, holocellulosis, ash content), higher heating value, equilibrium moisture and density were appraised. The wood’s chemical components were esteemed. Hardwood and softwood’s charcoal presented several differences, especially in yields due to types of lignin. Hardwoods produce a higher amount of acetic acid in slow pyrolysis. This acid was converted, mainly, in carbon dioxide and e a minor extent in methane and carbon monoxide. The gas release was affected by the temperature and wood’s composition. The main gases resulting from the slow pyrolysis of wood are CO2, CO, CH4, H2. The emission of this gases to the atmosphere in addition to increasing the environmental impact caused by the industry is still a waste of energy that could be harnessed more efficiently. Pyrolysis increased the energetic characteristics of sawmill waste. However, in spite of the advantages of carbonization, ways to mitigate the emission of gases emitted in an operational scale should be evaluated.


Clean Energy ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 527-535
Author(s):  
Henry Oghenero Orugba ◽  
Jeremiah Lekwuwa Chukwuneke ◽  
Henry Chukwuemeka Olisakwe ◽  
Innocent Eteli Digitemie

Abstract The low yield and poor fuel properties of bio-oil have made the pyrolysis production process uneconomic and also limited bio-oil usage. Proper manipulation of key pyrolysis variables is paramount in order to produce high-quality bio-oil that requires less upgrading. In this research, the pyrolysis of pig hair was carried out in a fixed-bed reactor using a calcium oxide catalyst derived from calcination of turtle shells. In the pyrolysis process, the influence of three variables—temperature, heating rate and catalyst weight—on two responses—bio-oil yield and its higher heating value (HHV)—were investigated using Response Surface Methodology. A second-order regression-model equation was obtained for each response. The optimum yield of the bio-oil and its HHV were obtained as 51.03% and 21.87 mJ/kg, respectively, at 545oC, 45.17oC/min and 2.504 g of pyrolysis temperature, heating rate and catalyst weight, respectively. The high R2 values of 0.9859 and 0.9527, respectively, obtained for the bio-oil yield and its HHV models using analysis of variance revealed that the models can adequately predict the bio-oil yield and its HHV from the pyrolysis process.


2011 ◽  
Vol 415-417 ◽  
pp. 1693-1696
Author(s):  
Jarinee Jongpluempiti ◽  
Kiatfa Tangchaichit

Cassava is one of the most important crops in Nakhon Ratchasima province which grows the most cassava in the Northeast of Thailand. Therefore, a large amount of cassava rhizome is left in the field after harvest. The objectives of this research were to study the potential of using residue biomass from the cassava crop i.e. cassava rhizomes. The physical properties and heating value of the cassava rhizomes were evaluated and compared with perennials. The analysis consisted of proximate analysis to measure moisture content, ash, volatile matter and fixed carbon. Heating values were measured using the IKA*C5003 automatic bomb calorimeter. The results were that for high moisture content of about 49-52% the cassava rhizomes had properties inferior to the perennials. When the moisture content of the rhizomes was reduced until around 12%, the properties were equivalent to those of wood samples that had about 2% moisture content. The proximate analyses gave ash 1.8-2.8%, volatile matter 72-75% and fixed carbon 9-13%. Moreover, its average heating values were around 17.08 MJ/kg, while the wood samples were around 17.78 MJ/kg. It appears that cassava rhizome has a high potential as an energy source. Using it to replace wood fuel is possible but it is necessary to reduce the moisture content to an appropriate level.


2016 ◽  
Vol 15 ◽  
Author(s):  
Tang Yuan Pin ◽  
Linda Biaw Leng Lim ◽  
Kushan U. Tennakoon

Three different associations of Scurrula ferruginea parasites on three different hosts, namely Tabebuia pallida, Acacia holosericea and Acacia auriculiformis were collected from the Brunei-Muara District, Brunei Darussalam. Moisture content and chemical analyses (ash content, total carbohydrate content, crude protein, proline and mineral content composition) were determined to explain the host-parasite physiological biochemistry. Scurrula ferruginea contained relatively higher moisture content (47 – 65%) and ash content (2.1-2.5%, dry basis) than the hosts (0.7-1.4%, dry basis). High nutrient and moisture contents in Scurrula ferruginea make it more preferred food source than its hosts for generalist herbivores in a given community. The mistletoe exhibited differential storage profile of total carbohydrate (1.9-6.4%, dry basis) and total nitrogen (1.2 – 3.0%, dry-basis) when compared to hosts (total carbohydrate 2.3 - 3.0 % dry basis; total nitrogen 1.6 - 2.1%). Meanwhile the proline content (24.9-56.0 mg/kg, dry basis) were found in Scurrula ferruginea. Among all the minerals analysed, potassium is the most abundant mineral present in all mistletoe-host associations. Data indicated that certain host desired solutes are preferentially absorbed and stored in mistletoe. 


2019 ◽  
Vol 2 (3) ◽  
pp. 954-963
Author(s):  
Aboubaker AbdallaIbrahim Ali ◽  
Hüseyin Akilli

Dewatered domestic wastewater sludge (DDWS) is one of the largest contributors of waste material in the world, and it immediately elevates local environmental problems, especially in the urban area. The conversion of this material into a usable form of green energy, such as syngas through gasification, can be a vital solution. Hence, this method not only solves the environmental issues related to DDWS disposal but also participates as an energy source. To achieve this goal, the essential fuel characterization, which includes initial moisture content, high heating value, ultimate analysis, and proximate analysis, were carried out to assess the potential energy in DDWS. Due to the high expenses of the successful design of the gasifier reactor, and there are no efficient methods to predict the gasification performance, the model of the DDWS gasification process using ASPEN Plus software was developed. As ASPEN Plus software does not contain a built-in gasifier reactor model, a combination of various reactors is used to simulate the gasification processes. These processes were divided out into two stages. In the first stage, DDWS was decomposed into its element by specifying yield distribution. By using Gibbs free energy minimization approach, the gasification reactions were modeled. The current model was validated with the previously published work. From the characterization findings, DDWS showed high initial moisture content 84.64% and potential energy with 16.84 MJ/kg high heating value. The proximate analysis based on the dry base of DDWS exhibited that more than 55.42 % of their mass is composed of volatile materials, and ash content is found to be less than 25.79%.


2021 ◽  
Vol 13 (9) ◽  
pp. 5249
Author(s):  
Ashfaq Ahmed ◽  
Muhammad S. Abu Bakar ◽  
Abdul Razzaq ◽  
Syarif Hidayat ◽  
Farrukh Jamil ◽  
...  

Acacia mangium is a widely grown tree species across the forests in Brunei Darussalam, posing a threat to the existence of some native species in Brunei Darussalam. These species produce large quantities of lignocellulosic biomass from the tree parts comprising the phyllodes, trunk, bark, twigs, pods, and branches. This study examined the thermochemical characteristics and pyrolytic conversion behavior of these tree parts to assess the possibility of valorization to yield bioenergy. Proximate, ultimate, heating value, and Fourier Transform Infrared Spectroscopy (FTIR) analyses were performed to assess the thermochemical characterization, while thermogravimetric analysis was conducted to examine the pyrolytic degradation behavior. Proximate analysis revealed a moisture content, volatile, fixed carbon, and ash contents of 7.88–11.65 wt.%, 69.82–74.85 wt.%, 14.47–18.31 wt.%, and 1.41–2.69 wt.%, respectively. The heating values of the samples were reported in a range of 19.51–21.58 MJ/kg on a dry moisture basis, with a carbon content in the range of 45.50–50.65 wt.%. The FTIR analysis confirmed the heterogeneous nature of the biomass samples with the presence of multiple functional groups. The pyrolytic thermal degradation of the samples occurred in three major stages from the removal of moisture and light extractives, hemicellulose and cellulose decomposition, and lignin decomposition. The bio-oil yield potential from the biomass samples was reported in the range of 40 to 58 wt. %, highlighting the potential of Acacia mangium biomass for the pyrolysis process.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-7
Author(s):  
Made Dirgantara ◽  
Karelius Karelius ◽  
Marselin Devi Ariyanti, Sry Ayu K. Tamba

Abstrak – Biomassa merupakan salah satu energi terbarukan yang sangat mudah ditemui, ramah lingkungan dan cukup ekonomis. Keberadaan biomassa dapat dimaanfaatkan sebagai pengganti bahan bakar fosil, baik itu minyak bumi, gas alam maupun batu bara. Analisi diperlukan sebagai dasar biomassa sebagai energi seperti proksimat dan kalor. Analisis terpenting untuk menilai biomassa sebagai bahan bakar adalah nilai kalori atau higher heating value (HHV). HHV secara eksperimen diukur menggunakan bomb calorimeter, namun pengukuran ini kurang efektif, karena memerlukan waktu serta biaya yang tinggi. Penelitian mengenai prediksi HHV berdasarkan analisis proksimat telah dilakukan sehingga dapat mempermudah dan menghemat biaya yang diperlukan peneliti. Dalam makalah ini dibahas evaluasi persamaan untuk memprediksi HHV berdasarkan analisis proksimat pada biomassa berdasarkan data dari penelitian sebelumnya. Prediksi nilai HHV menggunakan lima persamaan yang dievaluasi dengan 25 data proksimat biomassa dari penelitian sebelumnya, kemudian dibandingkan berdasarkan nilai error untuk mendapatkan prediksi terbaik. Hasil analisis menunjukan, persamaan A terbaik di 7 biomassa, B di 6 biomassa, C di 6 biomassa, D di 5 biomassa dan E di 1 biomassa.Kata kunci: bahan bakar, biomassa, higher heating value, nilai error, proksimat  Abstract – Biomass is a renewable energy that is very easy to find, environmentally friendly, and quite economical. The existence of biomass can be used as a substitute for fossil fuels, both oil, natural gas, and coal. Analyzes are needed as a basis for biomass as energy such as proximate and heat. The most critical analysis to assess biomass as fuel is the calorific value or higher heating value (HHV). HHV is experimentally measured using a bomb calorimeter, but this measurement is less effective because it requires time and high costs. Research on the prediction of HHV based on proximate analysis has been carried out so that it can simplify and save costs needed by researchers. In this paper, the evaluation of equations is discussed to predict HHV based on proximate analysis on biomass-based on data from previous studies. HHV prediction values using five equations were evaluated with 25 proximate biomass data from previous studies, then compared based on error value to get the best predictions. The analysis shows that Equation A predicts best in 7 biomass, B in 6 biomass, C in 6 biomass, D in 5 biomass, and E in 1 biomass. Key words: fuel, biomass, higher heating value, error value, proximate 


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Janduir Egito da Silva ◽  
Guilherme Quintela Calixto ◽  
Rodolfo Luiz Bezerra de Araújo Medeiros ◽  
Marcus Antônio de Freitas Melo ◽  
Dulce Maria de Araújo Melo ◽  
...  

AbstractThis study aims to analyze the products of the catalytic pyrolysis of naturally colored cotton residues, type BRS (seeds from Brazil), called BRS-Verde, BRS-Rubi, BRS-Topázio and BRS-Jade. The energy characterization of biomass was evaluated through ultimate and proximate analysis, higher heating value, cellulose, hemicellulose and lignin content, thermogravimetric analysis and apparent density. Analytical pyrolysis was performed at 500 °C in an analytical pyrolyzer from CDS Analytical connected to a gas chromatograph coupled to the mass spectrometer (GC/MS). The pyrolysis vapors were reformed at 300 and 500 °C through thermal and catalytic cracking with zeolites (ZSM-5 and HZSM-5). It has been noticed that pyrolysis vapor reforming at 500 °C promoted partial deoxygenation and cracking reactions, while the catalytic reforming showed better results for the product deoxygenation. The catalyst reforming of pyrolysis products, especially using HZSM-5 at 500 °C, promoted the formation of monoaromatics such as benzene, toluene, xylene and styrene, which are important precursors of polymers, solvents and biofuels. The main influence on the yields of these aromatic products is due to the catalytic activity of ZSM-5 favored by increased temperature that promotes cracking reactions due expanded zeolites channels.


Sign in / Sign up

Export Citation Format

Share Document