scholarly journals Effects of Dilution Rate on Fermentation Characteristics of Feeds With Different Carbohydrate Composition Incubated in the Rumen Simulation Technique (RUSITEC)

2021 ◽  
Vol 2 ◽  
Author(s):  
Friederike Pfau ◽  
Martin Hünerberg ◽  
Karl-Heinz Südekum ◽  
Gerhard Breves ◽  
Marcus Clauss ◽  
...  

This study investigated the impact of carbohydrate source and fluid passage rate (dilution rate) on ruminal fermentation characteristics and microbial crude protein (MCP) formation. Three commonly used feeds (barley grain [BG], beet pulp [BP], and soybean hulls [SBH]), which differ considerably in their carbohydrate composition, were incubated together with a mixture of grass hay and rapeseed meal in two identical Rusitec apparatuses (each 6 vessels). Differences in fluid passage rate were simulated by infusing artificial saliva at two different rates (1.5% [low] and 3.0% [high] of fermenter volume per h). This resulted in six treatments (tested in 3 runs): BGhigh, BGlow, BPhigh, BPlow, SBHhigh and SBHlow. The system was adapted for 7 d, followed by 4 d of sampling. Production of MCP (mg/g degraded organic matter [dOM]; estimated by 15N analysis) was greater with high dilution rate (DL; p < 0.001) and was higher for SBH compared to both BG and BP (p < 0.001). High DL reduced OM degradability (OMD) compared to low DL (p < 0.001), whereas incubation of BG resulted in higher OMD compared to SBH (p < 0.002). Acetate:propionate ratio decreased in response to high DL (p < 0.001). Total gas and methane production (both /d and /g dOM) were lower with high DL (p < 0.001). In our study increasing liquid passage rate showed the potential to increase MCP and decrease methane production simultaneously. Results encourage further studies investigating these effects on the rumen microbial population.

2001 ◽  
Vol 2001 ◽  
pp. 157-157 ◽  
Author(s):  
A. R. Moss ◽  
C. J. Newbold ◽  
D.I. Givens

Methane production represents an important sink for hydrogen within the rumen Beever (1993) suggested that the partitioning of fermentable dry matter (DM) between microbial synthesis and fermentation products would alter the pattern of hydrogen production and hence methanogenesis. This hypothesis was investigated in vitro using a range of diets varying in carbohydrate source (Moss et al., 2000). Methane production (moles) increased as the proportion of DM fermented to short chain fatty acids (SCFA) increased and this was related to decreasing water soluble carbohydrate (WSC) to cell wall (NDF) ratio of the diet. The objectives of the current study was to design diets with a range of WSC:NDF ratios and to measure the impact on hexose partitioning and methane production in sheep in vivo.


2016 ◽  
Vol 56 (10) ◽  
pp. 1700
Author(s):  
J. M. Cantet ◽  
D. Colombatto ◽  
G. Jaurena

The objective was to assess the impact of application of two enzyme mixtures on the in vitro dry matter digestibility, neutral detergent fibre digestibility, net cumulative gas production and methane production after 24 h of incubation of Milium coloratum (formely Panicum coloratum) and a Patagonian meadow grassland. A protease (Protex 6-L) and a fibrolytic enzyme (Rovabio) were assessed at three application rates (30, 60 and 90 mg/100 mL of distiller water) on the substrates. Meadow samples were higher to Milium ones (P < 0.05) for in vitro dry matter digestibility and net cumulative gas production at 24 h. Nevertheless, Milium was ~11% higher than meadow (P < 0.05) for methane when expressed as a proportion of digested dry matter (g/kg). Rovabio did not induce differences in any variable, but the addition of Protex reduced (P < 0.05) in vitro dry matter digestibility in both substrates without bringing about differences in methane production. Collectively, the addition of these enzymes did not benefit in vitro ruminal fermentation of low quality forages.


2013 ◽  
Vol 64 (9) ◽  
pp. 935 ◽  
Author(s):  
B. K. Banik ◽  
Z. Durmic ◽  
W. Erskine ◽  
K. Ghamkhar ◽  
C. Revell

Thirteen current and potential pasture species in southern Australia were examined for differences in their nutritive values and in vitro rumen fermentation profiles, including methane production by rumen microbes, to assist in selection of pasture species for mitigation of methane emission from ruminant livestock. Plants were grown in a glasshouse and harvested at 7 and 11 weeks after sowing for in vitro batch fermentation, with nutritive values assessed at 11 weeks of growth. The pasture species tested differed significantly (P < 0.001) in methane production during in vitro rumen fermentation, with the lowest methane-producing species, Biserrula pelecinus L., producing 90% less methane (4 mL CH4 g–1 dry matter incubated) than the highest methane-producing species, Trifolium spumosum L. (51 mL CH4 g–1 dry matter incubated). Proxy nutritive values of species were found not to be useful predictors of plant fermentation characteristics or methane production. In conclusion, there were significant differences in fermentative traits, including methane production, among selected pasture species in Australia, indicating that the choice of fodder species may offer a way to reduce the impact on the environment from enteric fermentation.


Author(s):  
Serine Amokrane ◽  
Rabah Arhab ◽  
Serina Calabro ◽  
Raffaella Tudisco ◽  
Federico Infascelli ◽  
...  

The in vitro rumen fermentation parameters and the antimethanogenic potential of three Asteraceae species: Chamaemelum nobile, Centaurea pulata and Chrysanthemum segetum were determined. Serum bottles containing 200 mg of each plant and 30 ml of the culture medium (artificial saliva plus rumen juice) were incubated for 24 h. After incubation, pH, volatile fatty acid (VFA), ammonia (NH3) and methane (CH4) productions were recorded. Methanogens and protozoa were quantified using  a Real Time PCR technique (qPCR). Cumulative gas productions, in vitro organic matter digestibility and VFA were not significantly affected by the added species when compared to the control (P > 0.05). The effects of Chamaemelum nobile and Chrysanthemum segetum on methane production, NH3 and acetate to propionate ratio (C2:C3) were similar. The two species were able to modulate rumen fermentation to produce significantly lower CH4 concentrations (-24.3% and -27.1%, respectively) compared to the control. C.pulata produced the highest cumulative gas and stimulated the microbial metabolism with an increase in C2:C3 ratio, NH3 and methane production (P < 0.05). No significant effect of the three species on methanogenic Archaea and protozoa was registered (P > 0.05). The three species studied herein show a good potential for mitigating ruminal methane production without any undesirable effects on the main fermentation parameters.


1994 ◽  
Vol 74 (2) ◽  
pp. 235-242 ◽  
Author(s):  
J. Chiquette ◽  
P. Savoie ◽  
A. Lirette

Eight ruminally fistulated steers (711 kg ± 72 kg) were used in a crossover experimental design to study the nutritional effects of macerating timothy grass (M) over the conventional conditioning process (C). Maceration was applied at mowing by conditioning the freshly cut forage through eight high-speed metallic grinding rolls with a shredding effect on leaves and stems. Animals were fed an all forage diet consisting of M or C. Feces were collected over a period of 6 d for total digestibility determination. On day 7 of each experimental period, ruminal fluid was sampled at 0, 1, 2, 4, 8 and 12 h after meals. On days 9–11, nylon bags were incubated in the rumen of each steer for 4, 8, 12, 24 and 48 h in order to determine forage dry matter (DM) degradation at the ruminal level. Maceration reduced the field drying time to reach baling moisture by 50% under Southeast Canadian climatic conditions. Results of forage digestibility at the ruminal level showed that the rate of forage DM disappearance was greater (P < 0.001) for M than for C. This greater ruminal digestibility of M was associated with numerically although not statistically greater ruminal concentrations of acetate, propionate and butyrate at all sampling times in steers fed M. However, butyrate concentration was higher (P < 0.05) in M fed animals than in C fed animals, at the 4 h sampling. Although M was better digested at the ruminal level, total digestibility of DM, organic matter, ADF and NDF was slightly less for M than for C (P < 0.05). Total digestibility of nitrogen was similar for both treatments. An increased passage rate of M might explain its decreased total digestibility. This last assumption still needs to be verified as well as the impact of this small decrease in digestibility on animal production. Key words: Maceration, digestibility, ruminal fermentation, steer, forage, grass


Author(s):  
Haihao Huang ◽  
Malgorzata Szumacher-Strabel ◽  
Amlan Kumar Patra ◽  
Sylwester Ślusarczyk ◽  
Dorota Lechniak ◽  
...  

1975 ◽  
Vol 85 (1) ◽  
pp. 93-101 ◽  
Author(s):  
D. G. Harrison ◽  
D. E. Beever ◽  
D. J. Thomson ◽  
D. F. Osbourn

SUMMARYThe effects of an altered rumen dilution rate (D) upon the molar proportions of volatile fatty acids (VFA) in rumen liquor, VFA production rate, microbial protein synthesis and carbohydrate digestion within the rumen were studied using adult wether sheep.Dilution rate and VFA proportions were unaltered by the infusion of up to 121 water/day into the rumen of sheep fed dried grass and concentrate (9:1). There was a small but significant (P< 0·05) increase in the rumen volume when the infusion rate was increased from 8 to 12 1/day.The intraruminal infusion of artificial saliva (41/day), or artificial saliva containing 4% or 8% w/v polyethylene glycol (PEG) caused a significant increase in D with an associated decline in the molar proportion of propionate (Pr) in the rumen liquor. A similar effect was obtained with the intraruminal infusion of 2·5% w/v sodium bicarbonate. The overall regression of Pr on D was highly significant: Pr = 32·5–82·1D;r= –0·99, P < 0·001.A diet of flaked maize: dried grass (6:4) was offered to three sheep each fitted with a rumen cannula and with a re-entrant cannula at the proximal duodenum. The intraruminal infusion (4 1/day) of artificial saliva containing 4% w/v PEG caused a significant (P< 0·01) increase in D and a significant (P< 0·01) depression in Pr in two animals. The dilution rate and Pr in the third animal were virtually unaltered by infusion. The regression of Pr on D for the three animals was highly significant: Pr = 34·8–136·8D; r = –0·98, P < 0·001. Each increase in D was associated with an increased flow of α-linked glucose polymer, total amino acids and total microbial amino acids into the small intestine and with an increased efficiency of microbial protein synthesis within the rumen.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 461-461
Author(s):  
Jordan L Cox-O’Neill ◽  
Vivek Fellner ◽  
Alan J Franluebbers ◽  
Deidre D Harmon ◽  
Matt H Poore ◽  
...  

Abstract Ruminant animal performance has been variable in studies grazing annual cool-season grass and brassica monocultures and mixtures. There is little understanding of the fermentation mechanisms causing variation. The aim of this study was to determine apparent dry matter (DM) digestibility, methane, and volatile fatty acid (VFA) concentration from different proportions of cereal rye (Secale cereal; R) and turnip (Brassica rapa L.; T) (0R:100T, 40R:60T, 60R:40T, and 100R:0T) via in vitro batch fermentation. Freeze-dried forage samples from an integrated crop-livestock study was assembled into the four treatments with a 50:50 leaf to root ratio for turnip. Measurements were made following a 48 hr fermentation with 2:1 buffer and ruminal fluid inoculum. Data were analyzed using Mixed Procedure of SAS with batch (replicate) and treatment (main effect) in the model; differences were declared at P ≤ 0.05, with tendencies declared at &gt; 0.05 but &lt; 0.10. Rumen apparent DM digestibility (26.8%; overall mean) was not different among treatments. Methane production was less (P &lt; 0.01) with inclusion of turnip ranging from 774 nmol/ml for 0R:100T to 1416 nmol/ml for 100R:0T. Total VFA production, acetate to propionate ratio, acetate, and valerate were not affected by forage treatments (117 mM, 1.45, 39.84 mol/100 mol, and 7.86 mol/100 mol, respectively; overall mean). Propionate, isobutyrate, and isovalerate concentrations were greater and butyrate concentration less with greater (P &lt; 0.01) proportions of rye in the mixture. No effect of R:T ratio on digestibility or total VFA production along with the observed differences in individual VFA concentration do not explain variable response in grazing animals. Additionally, methane production results indicate that grazing turnips could potentially reduce methane production and thus reduce ruminant livestock’s contribution to greenhouse gas emissions.


Sign in / Sign up

Export Citation Format

Share Document