In vitro ruminal fermentation characteristics and methane production differ in selected key pasture species in Australia

2013 ◽  
Vol 64 (9) ◽  
pp. 935 ◽  
Author(s):  
B. K. Banik ◽  
Z. Durmic ◽  
W. Erskine ◽  
K. Ghamkhar ◽  
C. Revell

Thirteen current and potential pasture species in southern Australia were examined for differences in their nutritive values and in vitro rumen fermentation profiles, including methane production by rumen microbes, to assist in selection of pasture species for mitigation of methane emission from ruminant livestock. Plants were grown in a glasshouse and harvested at 7 and 11 weeks after sowing for in vitro batch fermentation, with nutritive values assessed at 11 weeks of growth. The pasture species tested differed significantly (P < 0.001) in methane production during in vitro rumen fermentation, with the lowest methane-producing species, Biserrula pelecinus L., producing 90% less methane (4 mL CH4 g–1 dry matter incubated) than the highest methane-producing species, Trifolium spumosum L. (51 mL CH4 g–1 dry matter incubated). Proxy nutritive values of species were found not to be useful predictors of plant fermentation characteristics or methane production. In conclusion, there were significant differences in fermentative traits, including methane production, among selected pasture species in Australia, indicating that the choice of fodder species may offer a way to reduce the impact on the environment from enteric fermentation.

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1205
Author(s):  
Musen Wang ◽  
Fujin Zhang ◽  
Xinxin Zhang ◽  
Ying Yun ◽  
Lei Wang ◽  
...  

The objective of this work was to evaluate the pH, chemical composition, minerals, vitamins, and in vitro rumen fermentation characteristics of silage prepared with lucerne, sweet maize stalk (MS), and their mixtures. Freshly chopped lucerne and MS were combined in ratios of 100:0 (M0, control), 80:20 (M20), 60:40 (M40), 40:60 (M60), 20:80 (M80), and 0:100 (M100) on a fresh matter basis. Each treatment was prepared in triplicate, and a total of eighteen silos were fermented for 65 days. After 65 days of fermentation, the pH values in M0, M20, M40, M60, M80, and M100 silages were 5.47, 4.84, 4.23, 4.13, 3.79, and 3.61, respectively. As the MS proportion in the mixtures increased, silage K, Ca, P, Na, Fe, and Cu concentrations linearly decreased (p < 0.001) and so did vitamins B5 and K1 and α-tocopherol. In vitro rumen dry matter and organic matter degradability, pH, ammonia, total volatile fatty acid, and gas production linearly decreased (p < 0.01), while neutral detergent fiber concentration linearly increased (p < 0.001), with increasing proportion of MS. The in vitro dry matter and organic matter degradability rapidly decreased when the MS percentage was ≥60%. In conclusion, the M40 silage is the most suitable for livestock utilization in local forage production considering the balance of silage pH, nutritional quality, and in vitro ruminal fermentation characteristics.


2016 ◽  
Vol 56 (10) ◽  
pp. 1700
Author(s):  
J. M. Cantet ◽  
D. Colombatto ◽  
G. Jaurena

The objective was to assess the impact of application of two enzyme mixtures on the in vitro dry matter digestibility, neutral detergent fibre digestibility, net cumulative gas production and methane production after 24 h of incubation of Milium coloratum (formely Panicum coloratum) and a Patagonian meadow grassland. A protease (Protex 6-L) and a fibrolytic enzyme (Rovabio) were assessed at three application rates (30, 60 and 90 mg/100 mL of distiller water) on the substrates. Meadow samples were higher to Milium ones (P < 0.05) for in vitro dry matter digestibility and net cumulative gas production at 24 h. Nevertheless, Milium was ~11% higher than meadow (P < 0.05) for methane when expressed as a proportion of digested dry matter (g/kg). Rovabio did not induce differences in any variable, but the addition of Protex reduced (P < 0.05) in vitro dry matter digestibility in both substrates without bringing about differences in methane production. Collectively, the addition of these enzymes did not benefit in vitro ruminal fermentation of low quality forages.


2020 ◽  
Vol 52 (5) ◽  
pp. 2433-2441
Author(s):  
Lais Micaelle Lopes Moura ◽  
Flávia Denise da Silva Pereira ◽  
Patrícia Rodrigues de Lima ◽  
Júlio Cesar Silva Nascimento ◽  
Andresca dos Santos de Oliveira ◽  
...  

2020 ◽  
Vol 13 (5) ◽  
pp. 940-946
Author(s):  
Sadarman Sadarman ◽  
Muhammad Ridla ◽  
Nahrowi Nahrowi ◽  
Roni Ridwan ◽  
Anuraga Jayanegara

Aim: The present experiment aimed to evaluate the use of different additives, i.e., lactic acid bacteria (LAB) inoculant, tannin extract, and propionic acid, on the chemical composition, fermentative characteristics, and in vitro ruminal fermentation of soy sauce by-product (SSB) silage. Materials and Methods: SSB was subjected to seven silage additive treatments: Fresh SSB, ensiled SSB, ensiled SSB+LAB, ensiled SSB+2% acacia tannin, ensiled SSB+2% chestnut tannin, ensiled SSB+0.5% propionic acid, and ensiled SSB+1% acacia tannin+1% chestnut tannin+0.5% propionic acid. Ensiling was performed for 30 days in three replicates, and each replicate was made in duplicate. The samples were evaluated for their chemical composition and silage fermentation characteristics and were tested in an in vitro rumen fermentation system. Results: In general, the nutrient compositions did not differ among the tested SSBs in response to the different additives used. The addition of tannins, either acacia or chestnut, and propionic acid significantly decreased the pH of the ensiled SSB (p<0.05). The addition of several additives (except LAB) decreased the ammonia concentration in SSB silage (p<0.05). The total volatile fatty acids in the in vitro rumen fermentation profile of the ensiled SSB were not significantly altered by the various additives applied. The addition of some additives, i.e., ensiled SSB+LAB and ensiled SSB+2% acacia tannin, reduced the digestibility values of the SSB (p<0.05). Different silage additives did not significantly affect methane production, although the addition of acacia tannins tended to result in the lowest methane production among treatments. Conclusion: The use of additives, particularly 2% acacia tannins, can reduce proteolysis in SSB silage.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Avijit Dey ◽  
Shyam Sundar Paul ◽  
Puran Chand Lailer ◽  
Satbir Singh Dahiya

AbstractEnteric methane production contributes significantly to the greenhouse gas emission globally. Although, buffaloes are integral part of livestock production in Asian countries, contributing milk, meat and draft power, the contribution of enteric methane to environmental pollution attracts attention. The present study investigated the efficacy of garlic (Allium sativum) oil in reducing enteric methane production from buffaloes (Bubalus bubalis) by in vitro rumen fermentation. Garlic oil (GOL) was tested at four concentrations [0 (Control), 33.33 µl (GOL-1), 83.33 µl (GOL-2) and 166.66 µl (GOL-3) per litre of buffered rumen fluid] in 100-ml graduated glass syringes and incubated at 39℃ for 24 h for in vitro rumen fermentation study. Supplementation of GOL-1 increased (p < 0.05) total gas production in comparison with GOL-3; however, it remained comparable (p > 0.05) with control and GOL-2. Graded doses of garlic oil inclusions reduced (p < 0.001) methane concentration (%) in total gas and total methane production (ml/g DM), irrespective of concentrations. The feed degradability, volatile fatty acids and microbial biomass production (MBP) were not affected (p > 0.05) by GOL-1, but these tended to decrease in GOL-2 with marked reduction (p < 0.01) in GOL-3. The decrease (p < 0.01) in NH3–N concentration in fermentation fluid in the presence of garlic oil, irrespective of concentration, suggests reduced deamination by inhibiting rumen proteolytic bacterial population. The activities of ruminal fibrolytic enzymes (CMCase, xylanase, β-glucosidase, acetyl esterase) were not affected by lower dose (GOL-1) of garlic oil; however, reduction (p < 0.05) of these enzymes activity in rumen liquor was evident at higher doses (GOL-2 and GOL-3) of supplementation. This study shows positive impact of garlic oil supplementation at low dose (33.33 µl/l of rumen fluid) in reducing enteric methane production, thereby, abatement of environmental pollution without affecting feed digestibility.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 461-461
Author(s):  
Jordan L Cox-O’Neill ◽  
Vivek Fellner ◽  
Alan J Franluebbers ◽  
Deidre D Harmon ◽  
Matt H Poore ◽  
...  

Abstract Ruminant animal performance has been variable in studies grazing annual cool-season grass and brassica monocultures and mixtures. There is little understanding of the fermentation mechanisms causing variation. The aim of this study was to determine apparent dry matter (DM) digestibility, methane, and volatile fatty acid (VFA) concentration from different proportions of cereal rye (Secale cereal; R) and turnip (Brassica rapa L.; T) (0R:100T, 40R:60T, 60R:40T, and 100R:0T) via in vitro batch fermentation. Freeze-dried forage samples from an integrated crop-livestock study was assembled into the four treatments with a 50:50 leaf to root ratio for turnip. Measurements were made following a 48 hr fermentation with 2:1 buffer and ruminal fluid inoculum. Data were analyzed using Mixed Procedure of SAS with batch (replicate) and treatment (main effect) in the model; differences were declared at P ≤ 0.05, with tendencies declared at &gt; 0.05 but &lt; 0.10. Rumen apparent DM digestibility (26.8%; overall mean) was not different among treatments. Methane production was less (P &lt; 0.01) with inclusion of turnip ranging from 774 nmol/ml for 0R:100T to 1416 nmol/ml for 100R:0T. Total VFA production, acetate to propionate ratio, acetate, and valerate were not affected by forage treatments (117 mM, 1.45, 39.84 mol/100 mol, and 7.86 mol/100 mol, respectively; overall mean). Propionate, isobutyrate, and isovalerate concentrations were greater and butyrate concentration less with greater (P &lt; 0.01) proportions of rye in the mixture. No effect of R:T ratio on digestibility or total VFA production along with the observed differences in individual VFA concentration do not explain variable response in grazing animals. Additionally, methane production results indicate that grazing turnips could potentially reduce methane production and thus reduce ruminant livestock’s contribution to greenhouse gas emissions.


2022 ◽  
Vol 10 (1) ◽  
pp. 1-9
Author(s):  
Aarón A. Molho-Ortiz ◽  
Atmir Romero-Pérez ◽  
Efrén Ramírez-Bribiesca ◽  
Claudia C. Márquez-Mota ◽  
Francisco A. Castrejón-Pineda ◽  
...  

2018 ◽  
Vol 53 (4) ◽  
pp. 504-513
Author(s):  
Rafaela Scalise Xavier de Freitas ◽  
Delci de Deus Nepomuceno ◽  
Elisa Cristina Modesto ◽  
Tatiana Pires Pereira ◽  
João Carlos de Carvalho Almeida ◽  
...  

Abstract: The objective of this work was to evaluate the effect of the addition of the methanolic extract of Urochloa humidicola at four different concentrations (0, 75, 150, and 250 g L-1) on the in vitro rumen fermentation of Urochloa brizantha. The following variables were evaluated by the in vitro gas production technique: kinetic parameters; rumen degradation of dry matter; and production and concentration of the methane and carbon dioxide gases and of the acetate, propionate, and butyrate short-chain fatty acids. The addition of the methanolic extract reduces the production of gases generated from the degradation of non-fibrous carbohydrates (fraction A) in 9.55, 6.67, and 13.33%, respectively, at the concentrations of 75, 150, and 250 g L-1, compared with the control group, but it negatively affects the degradation of the dry matter of U. brizantha at the concentrations of 150 and 250 g L-1. The extract shows negative quadratic effect on gas production during 12 and 24 hours of U. brizantha incubation. The extract of U. humidicola reduces methane production and increases short-chain fatty acid production at the concentrations of 75, 150, and 250 g L-1.


Sign in / Sign up

Export Citation Format

Share Document