scholarly journals Enhancement of Bone Regeneration on Calcium-Phosphate-Coated Magnesium Mesh: Using the Rat Calvarial Model

Author(s):  
Shuang Wu ◽  
Yong-Seok Jang ◽  
Min-Ho Lee

Metallic biodegradable magnesium (Mg) is a promising material in the biomedical field owing to its excellent biocompatibility, bioabsorbability, and biomechanical characteristics. Calcium phosphates (CaPs) were coated on the surface of pure Mg through a simple alkali-hydrothermal treatment. The surface properties of CaP coatings formed on Mg were identified through wettability, direct cell seeding, and release tests since the surface properties of biomaterials can affect the reaction of the host tissue. The effect of CaP-coated Mg mesh on guided bone regeneration in rat calvaria with the critical-size defect was also evaluated in vivo using several comprehensive analyses in comparison with untreated Mg mesh. Following the application of protective CaP coating, the surface energy of Mg improved with higher hydrophilicity and cell affinity. At the same time, the CaP coating endowed Mg with higher Ca affinity and lower degradation. The Mg mesh with CaP coating had higher osteointegration and bone affinity than pristine Mg mesh.

2015 ◽  
Vol 41 (5) ◽  
pp. 543-549 ◽  
Author(s):  
Philip J. DeNicolo ◽  
M. Kelly Guyton ◽  
Michael F. Cuenin ◽  
Steven D. Hokett ◽  
Mohamed Sharawy ◽  
...  

Platelet-rich plasma (PRP) is an autogenous source of growth factors shown to facilitate human bone growth. Bio-Oss, an osteoconductive xenograft, is used clinically to regenerate periodontal defects, restore dental alveolar ridges, and facilitate sinus-lift procedures. The purpose of this study was to analyze whether a combination of PRP and Bio-Oss would enhance bone regeneration better than either material alone. PRP and/or Bio-Oss were administered in an 8-mm critical-size defect (CSD) rat calvarial model of bone defect between 2 polytetrafluoroethylene membranes to prevent soft tissue incursion. Eight weeks after the induction of the CSD, histologic sections were stained with hematoxylin and eosin stain and analyzed via light microscopy. Qualitative analyses revealed new bone regeneration in all 4 groups. The Bio-Oss and PRP plus Bio-Oss groups demonstrated greater areas of closure in the defects than the control or PRP-only groups because of the space-maintaining ability of Bio-Oss. The groups grafted with Bio-Oss showed close contact with new bone growth throughout the defects, suggesting a stronger graft. The use of PRP alone or in combination with Bio-Oss, however, did not appear to enhance osseous regeneration at 8 weeks. Areas grafted with Bio-Oss demonstrated greater space-maintaining capacity than controls, and PRP was an effective vehicle for placement of the Bio-Oss. However, at 8 weeks this study was unable to demonstrate a significant advantage of using PRP plus Bio-Oss over using Bio-Oss alone.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2931 ◽  
Author(s):  
Quang Ngoc Dong ◽  
Takahiro Kanno ◽  
Yunpeng Bai ◽  
Jingjing Sha ◽  
Katsumi Hideshima

Uncalcined and unsintered hydroxyapatite/poly l-lactide (u-HA/PLLA) material has osteoconductive characteristics and is available for use as a maxillofacial osteosynthetic reconstruction device. However, its bone regeneration ability in the maxillofacial region has not been fully investigated. This study is the first to assess the bone regenerative potential of osteoconductive u-HA/PLLA material when it is used for repairing maxillofacial bone defects. A total of 21 Sprague-Dawley male rats were divided into three groups—the u-HA/PLLA, PLLA, or sham control groups. A critical size defect of 4 mm was created in the mandible of each rat. Then, the defect was covered with either a u-HA/PLLA or PLLA sheet on the buccal side. The rats in each group were sacrificed at 2, 4, or 8 weeks. The rats’ mandibles were sampled for histological analysis with hematoxylin and eosin staining, histomorphometry, and immunohistochemistry with Runx2 and osteocalcin (OCN) antibody. The amount of newly formed bone in the u-HA/PLLA group was significantly higher than that of the PLLA group. The expression of Runx2 and OCN in the u-HA/PLLA group was also significantly higher. These results demonstrate that the u-HA/PLLA material has excellent bone regenerative ability and confirm its applicability as a reconstructive device in maxillofacial surgery.


Author(s):  
Baoqiang Li ◽  
Lei Wang ◽  
Yu Hao ◽  
Daqing Wei ◽  
Ying Li ◽  
...  

To promote bone regeneration in vivo using critical-size calvarial defect model, hybrid hydrogel was prepared by mixing chitosan with hydroxyapatite (HA) and ultraviolet (UV) irradiation in situ. The hydrosoluble, UV-crosslinkable and injectable N-methacryloyl chitosan (N-MAC) was synthesized via single-step N-acylation reaction. The chemical structure was confirmed by 1H-NMR and FTIR spectroscopy. N-MAC hydrogel presented a microporous structure with pore sizes ranging from 10 to 60 μm. Approximately 80% cell viability of N-MAC hydrogel against encapsulated 3T3 cell indicated that N-MAC is an emerging candidate for mimicking native extracellular matrix (ECM). N-MAC hydrogel hybridized with HA was used to accelerate regeneration of calvarial bone using rabbit model. The effects of hybrid hydrogels to promote bone regeneration were evaluated using critical size calvarial bone defect model. The healing effects of injectable hydrogels with/without HA for bone regeneration were investigated by analyzing X-ray image after 4 or 6 weeks. The results showed that the regenerated new bone for N-MAC 100 was significantly greater than N-MAC without HA and untreated controls. The higher HA content in N-MAC/HA hybrid hydrogel benefited the acceleration of bone regeneration. About 50% closure of defect site after 6 weeks postimplantation demonstrated potent osteoinductivity of N-MAC 100 UV-crosslinkable and injectable N-MAC/HA hybrid hydrogel would allow serving as a promising biomaterial for bone regeneration using the critical-size calvarial defect.


2019 ◽  
Vol 20 (14) ◽  
pp. 3430 ◽  
Author(s):  
Jaime Freitas ◽  
Susana Gomes Santos ◽  
Raquel Madeira Gonçalves ◽  
José Henrique Teixeira ◽  
Mário Adolfo Barbosa ◽  
...  

The normal bone regeneration process is a complex and coordinated series of events involving different cell types and molecules. However, this process is impaired in critical-size/large bone defects, with non-unions or delayed unions remaining a major clinical problem. Novel strategies are needed to aid the current therapeutic approaches. Mesenchymal stem/stromal cells (MSCs) are able to promote bone regeneration. Their beneficial effects can be improved by modulating the expression levels of specific genes with the purpose of stimulating MSC proliferation, osteogenic differentiation or their immunomodulatory capacity. In this context, the genetic engineering of MSCs is expected to further enhance their pro-regenerative properties and accelerate bone healing. Herein, we review the most promising molecular candidates (protein-coding and non-coding transcripts) and discuss the different methodologies to engineer and deliver MSCs, mainly focusing on in vivo animal studies. Considering the potential of the MSC secretome for bone repair, this topic has also been addressed. Furthermore, the promising results of clinical studies using MSC for bone regeneration are discussed. Finally, we debate the advantages and limitations of using MSCs, or genetically-engineered MSCs, and their potential as promoters of bone fracture regeneration/repair.


2020 ◽  
Vol 6 (2) ◽  
pp. 189-200
Author(s):  
Shuang S. Chen ◽  
Ophir Ortiz ◽  
Alexandra K. Pastino ◽  
Xiaohuan Wu ◽  
Bin Hu ◽  
...  

Abstract In the present study, a series of four different scaffolds were comparatively evaluated in a goat calvarial critical size defect model. Such studies are only rarely reported in the literature. In our work, E1001(1k), a member of a large combinational library of tyrosine-derived polycarbonates (TyrPC), was used to prepare two calcium phosphate hybrid, biodegradable bone scaffolds. In one formulation, the widely used β-tricalcium phosphate (β-TCP) was incorporated into the polymer scaffold. In the second formulation, a coating of dicalcium phosphate dihydrate (DCPD, also known as brushite) was used as the mineral phase. These scaffolds were evaluated for bone regeneration in goat calvarial 20-mm critical size defects (CSD) after 16 weeks. Results were compared with chronOS (a clinically used product) and E1001(1k)/β-TCP scaffolds, augmented with 400 μg of recombinant human bone morphogenetic protein-2 (rhBMP-2). Microcomputed tomography (micro-CT) and histomorphometry were used to assess bone regeneration within the defects. Histomorphometry showed that rhBMP-2-augmented E1001(1k)/β-TCP scaffolds completely healed the defect in all animals within 16 weeks. Among the hybrid scaffolds that were not augmented with rhBMP-2, the degree of bone regeneration within the defect area was low for the clinically used chronOS, which is a poly(lactide co-ε-caprolactone)/β-TCP hybrid scaffold. Similar results were obtained for E1001(1k)/β-TCP scaffolds, indicating that replacing poly(lactide co-ε-caprolactone) with E1001(1k) does not improve bone regeneration is this model. However, a statistically significant improvement of bone regeneration was observed for E1001(1k)/DCPD scaffolds. These scaffolds resulted in significant levels of bone regeneration in all animals and in complete bridging of the defect in three of six tests. This is the first report of a synthetic bone scaffold being able to heal a critical size calvarial defect in a large animal model without the addition of exogenous growth factors. Lay Summary Reconstruction of large bone defects is a significant clinical problem. The overwhelming majority of all research results are obtained in vitro or in small animal models (mouse, rat, rabbit) that cannot predict the clinical outcomes in humans. We address this problem by conducting our studies in a goat calvarial critical size defect model, which is widely regarded as predictive of human outcomes. Among the three rhBMP-2-free scaffolds tested, only one specific formulation, E1001(1k)/DCPD, resulted in massive bone ingrowth into the center of the defect in all animals and in complete bridging of the defect 50% of the animals. This is the first time, a synthetic bone scaffold was able to heal a critical size calvarial defect in a large animal model without the addition of biological growth factors. Given the high cost of biologically enhanced bone grafts and the regulatory complexities of their FDA market clearance, the development of E1001(1k)/DCPD hybrid scaffolds addresses a significant clinical need.


Sign in / Sign up

Export Citation Format

Share Document