scholarly journals Preparation and Characterization of Chinese Leek Extract Incorporated Cellulose Composite Films

Author(s):  
Qiying Zeng ◽  
Naiyu Xiao ◽  
Xueqin Zhang ◽  
Wenhan Luo ◽  
Gengshen Xiao ◽  
...  

This study aimed to prepare microcrystalline cellulose (MCC) films with good mechanical properties via plasticization using a Chinese leek (CL, Allium tuberosum) extract. The microstructure, crystal structure, mechanical properties, barrier ability, and thermal properties of the films were investigated. The chemical structure analysis of CL extract showed the existence of cellulose, lignin, and low-molecular-weight substances, such as polysaccharides, pectins, and waxes, which could act as plasticizers to enhance the properties of MCC:CL biocomposite films. The results of scanning electron microscopy and atomic force microscopy analyses indicated the good compatibility between MCC and CL extract. When the volume ratio of MCC:CL was 7:3, the MCC:CL biocomposite film exhibited the best comprehensive performance in terms of water vapor permeability (2.11 × 10–10 g/m·s·Pa), elongation at break (13.2 ± 1.8%), and tensile strength (24.7 ± 2.5 MPa). The results of a UV absorption analysis demonstrated that the addition of CL extract improved the UV-shielding performance of the films. Therefore, this work not only proposes a facile method to prepare MCC films with excellent mechanical properties via plasticization using CL extract but also broadens the potential applications of MCC films in the packaging area.

2021 ◽  
pp. 089270572110075
Author(s):  
Kajal Mishra ◽  
Shishir Sinha

The present work focuses on surface functionalization, characterization, biodegradability and barrier properties of MOSF as a practicable reinforcement in PVA matrix. Film-forming dispersions at different concentrations of alkali and acid treatments were casted at room temperature. The effect of surface modifications on the developed film’s compositional, physical, mechanical, biodegradability and barrier properties were analyzed. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) were used to describe the functional composition, formation and surface morphology of the film. The 5% acid treated film significantly increases the tensile strength (33.69 MPa) and flexural strength (56.612 MPa), which was close to the frequently used LDPE and HDPE package films. Composite films were moisture absorptive but simultaneously capable to maintain uniformity and composition upon modifications. Lower water vapor permeability (1.42 × 10−10gs−1 m−1 Pa−1), eminent biodegradability proved the suitability of composite film for various packaging applications.


2013 ◽  
Vol 10 (1) ◽  
pp. 121-130 ◽  
Author(s):  
Babak Ghanbarzadeh ◽  
Hadi Almasi ◽  
Seyed Amir Oleyaei

Abstract A novel glycerol-plasticized and citric acid (CA)-modified starch/carboxymethyl cellulose (CMC)/montmorillonite (MMT) bionanocomposite films were prepared from corn starch by casting, to study the effect of the 10% CA, 10% CMC and four different loadings of MMT on the properties of starch films. Atomic force microscopy surface analysis showed that starch/CMC/MMT films had the highest roughness. X-ray diffraction test showed that the clay nanolayers formed an intercalated structure in the bionanocomposites. However, completely exfoliated structure formed only in the pure starch/MMT nanocomposites (without CA and CMC). CA, CMC and MMT improved mechanical properties of starch films. MMT had the greatest effect on the mechanical properties. The MMT addition at content of 7% caused to increase in ultimate tensile strength by more than threefold in comparison to modified starch/CMC films. The water vapor permeability (WVP) decreased significantly (p < 0.05) by the addition of CA and CMC. When the MMT content of the starch films reached to 7%, the WVP decreased about 75% in comparison to the neat starch film. However, the hydrophilic character of bionanocomposites increased as the increasing of MMT content.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1661
Author(s):  
Katarzyna Adamiak ◽  
Katarzyna Lewandowska ◽  
Alina Sionkowska

Collagen films are widely used as adhesives in medicine and cosmetology. However, its properties require modification. In this work, the influence of salicin on the properties of collagen solution and films was studied. Collagen was extracted from silver carp skin. The rheological properties of collagen solutions with and without salicin were characterized by steady shear tests. Thin collagen films were prepared by solvent evaporation. The structure of films was researched using infrared spectroscopy. The surface properties of films were investigated using Atomic Force Microscopy (AFM). Mechanical properties were measured as well. It was found that the addition of salicin modified the roughness of collagen films and their mechanical and rheological properties. The above-mentioned parameters are very important in potential applications of collagen films containing salicin.


MRS Advances ◽  
2016 ◽  
Vol 2 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Eunice Cunha ◽  
Fernando Duarte ◽  
M. Fernanda Proença ◽  
M. Conceição Paiva

ABSTRACTGraphite nanoplates (GnP) have recently attracted attention as an economically viable alternative for the development of functional and structural nanocomposites. The incorporation of GnP into waterborne polyurethane (WPU) with loadings from 0.1 to 10 wt.% was studied. The mechanical properties of the composite films were assessed by tensile testing showing an increase of the Young’s modulus up to 48%. The electrical conductivity increased by 9 orders of magnitude and the water vapor permeability of the composite films decreased 57% for composites containing 5.0 wt.% of GnP.


Author(s):  
Jie Liu ◽  
Yanchun Liu ◽  
Eleanor M. Brown ◽  
Zhengxin Ma ◽  
Cheng-Kung Liu

The leather industry generates considerable amounts of solid waste and raises many environmental concerns during its disposal. The presence of collagen in these wastes provides a potential protein source for the fabrication of bio-based value-added products. Herein, a novel composite film was fabricated by incorporating vegetable-tanned collagen fiber (VCF), a mechanically ground powder-like leather waste, into a chitosan matrix and crosslinked with genipin. The obtained composite film showed a compact structure and the hydrogen bonding interactions were confirmed by FTIR analysis, indicating a good compatibility between chitosan and VCF. The optical properties, water absorption capacity, thermal stability, water vapor permeability and mechanical properties of the composite films were characterized. The incorporation of VCF into chitosan led to significant decreases in opacity and solubility of the films. At the same time, the mechanical properties, water vapor permeability and thermal stability of the films were improved. The composite film exhibited antibacterial activity against food-borne pathogens. Results from this research indicated the potential of the genipin-crosslinked chitosan/VCF composites for applications in antimicrobial packaging. 


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4406
Author(s):  
Anita Kwaśniewska ◽  
Michał Świetlicki ◽  
Adam Prószyński ◽  
Grzegorz Gładyszewski

In the present study, starch/powdered activated carbon composite films were prepared by incorporating various amounts of powdered activated carbon (PAC)—1–5, 10, and 15 %—into a starch matrix, using the solvent casting method. The effect of PAC addition on the biopolymer film was investigated. The mechanical properties were examined by ultra-nanoindentation, nanoscratch, and micro-tensile tests. Since the mechanical properties of biopolymer films are correlated with their structure, the effect of PAC addition was tested using X-ray diffraction. The surface parameters morphology and wettability were analyzed by atomic force microscopy (AFM) and contact angle measurements. The barrier properties were examined by determining water vapor permeability and the water solubility index. The obtained results did not show a monotonic dependence of the mechanical parameters on PAC content, with the exception of the maximum strain, which decreased as the amount of the additive increased. The visible effect of PAC addition was manifested in changes in the adhesive force value and in water vapor permeability (WVP). The barrier properties decreased with the increase of the filler content.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Zhe Wang ◽  
Shuaifeng Hu ◽  
Huaiyu Wang

In an effort to produce scale-up of edible films, collagen-based films including different amounts of sodium alginate (CS) were prepared by casting method. Films were characterized based on their rheological, thermal, and mechanical properties, water vapor permeability (WVP), and oxygen permeability (OP). The microstructures were also evaluated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform-infrared spectroscopy (FTIR). Furthermore, the addition of sodium alginate effectively improved the viscosity and thermal stability, significantly increased TS, and decreased E and WVP (P<0.05), but with no obvious effect on OP (P>0.05). SEM and AFM showed homogeneous matrix, with no signs of phase separation in the blends. Overall, films (CS2) produced using collagen (g) : sodium alginate (g) = 10 : 2 showed suitable rheological property (apparent viscosity was 4.87 m Pa s−1) and better TS (26.49 Mpa), E (64.98%), WVP (1.79 × 10−10 g·cm−1·s−1·Pa−1), and OP (3.77 × 10−5 cm3·m−2·d−1·Pa−1).


Cosmetics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 95
Author(s):  
Katarzyna Adamiak ◽  
Marzanna Kurzawa ◽  
Alina Sionkowska

Collagen-based materials are widely used as adhesives in medicine and cosmetology. However, for several applications, their properties require modification. In this work, the influence of Melissa officinalis on the properties of collagen films was studied. Collagen was extracted from Silver Carp skin. Thin collagen films were prepared by solvent evaporation. The structure of films was researched using infrared spectroscopy. The surface properties of films were investigated using Atomic Force Microscopy (AFM). Mechanical properties were measured as well. Antioxidant activity was determined by spectrophotometric methods using DPPH free radicals, FRAP, and CUPRAC methods. Total phenolic compounds were determined by the Folin–Ciocalteau method. It was found that the addition of Melissa officinalis modified the roughness of collagen films and their mechanical properties. Moreover, the obtained material has antioxidant properties. The parameters mentioned above are very important in potential applications of collagen films containing Melissa officinalis in cosmetics.


2016 ◽  
Vol 36 (2) ◽  
pp. 181-188 ◽  
Author(s):  
Aleksandra Buzarovska ◽  
Gordana Bogoeva-Gaceva ◽  
Radek Fajgar

Abstract Poly(lactic acid) (PLA) based composite films with different content of talc (5–15 wt%) were prepared by the solvent casting method. The effect of talc on morphological, structural, thermal, barrier and mechanical properties of neat PLA was investigated. The PLA/talc composites revealed a polymorphic crystalline structure, as demonstrated by X-ray diffraction (XRD) study and differential scanning calorimetry (DSC) analysis. The PLA/talc composites also exhibited significantly improved barrier properties (up to 55% compared to neat PLA), as shown by water vapor permeability (WVP) tests. The puncture measurements showed improved mechanical properties at lower content of talc (up to 5 wt%), and increased brittleness of the PLA/talc composite films at higher talc concentrations.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xiao-feng Chen ◽  
Jun-li Ren ◽  
Ling Meng

A series of composite films were prepared using poly(vinyl alcohol) (PVA) and xylan as degradable raw materials under the addition of glycerol and ammonium zirconium carbonate (AZC). The influences of AZC on the mechanical properties, water-resisting properties, thermal stability, solubility (S), and water vapor permeability of PVA/xylan composite films were comparatively discussed. The results showed that AZC had a positive impact on improving the water resistance and mechanical properties of composite films especially for elongation at break (EAB). With increasing the AZC amounts from 0% to 15%, EAB increased rapidly from 18.5% to 218.0%, and theSvalues decrease from 11.64% to 8.64%. When the AZC amount reached 15%, the tensile strength still performed well (22.10 MPa). The great compatibility of components in composite films was also observed. Moreover, the addition of AZC had great influences on the thermal stability of composite films and the degradation in soil.


Sign in / Sign up

Export Citation Format

Share Document