scholarly journals A Novel Real-Time Reverse Transcription Loop-Mediated Isothermal Amplification Detection Platform: Application to Diagnosis of COVID-19

Author(s):  
Yi Wang ◽  
Xiaoxia Wang ◽  
Hai Chen ◽  
Limei Han ◽  
Licheng Wang ◽  
...  

The ongoing Corona virus disease (COVID-19) outbreak has become a huge global health concern. Here, we reported a novel detection platform based on the loop-mediated isothermal amplification (LAMP), termed real-time reverse transcription LAMP (rRT-LAMP) and applied it for the diagnosis of COVID-19 (COVID-19 rRT-LAMP). rRT-LAMP integrates reverse transcription, LAMP amplification, restriction endonuclease cleavage and real-time fluorescence detection into one-pot reaction, and facilitates the diagnosis of COVID-19 at 64°C for only 35 min. The ORF1ab (opening reading frame 1a/b) and NP (nucleoprotein) genes of SARS-CoV-2 were detected for diagnosing COVID-19. The limit of detection (LoD) of COVID-19 rRT-LAMP assay was 14 copies (for each marker) per vessel, and no positive results were obtained from non-SARS-CoV-2 templates. To demonstrate its feasibility, a total of 33 oropharynx swab samples collected from COVID-19 patients also were diagnosed as SARS-CoV-2 infection using COVID-19 rRT-LAMP protocol. No cross-reactivity was yielded from 41 oropharynx swab samples collected from non-COVID-19 patients. These data suggesting that the COVID-19 rRT-LAMP assay is a potential detection tool for the diagnosis of SARS-CoV-2 infection in clinical, field and disease control laboratories, and will be valuable for controlling the COVID-19 epidemic.

2020 ◽  
Vol 21 (8) ◽  
pp. 2826 ◽  
Author(s):  
Renfei Lu ◽  
Xiuming Wu ◽  
Zhenzhou Wan ◽  
Yingxue Li ◽  
Xia Jin ◽  
...  

COVID-19 has become a major global public health burden, currently causing a rapidly growing number of infections and significant morbidity and mortality around the world. Early detection with fast and sensitive assays and timely intervention are crucial for interrupting the spread of the COVID-19 virus (SARS-CoV-2). Using a mismatch-tolerant amplification technique, we developed a simple, rapid, sensitive and visual reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for SARS-CoV-2 detection based on its N gene. The assay has a high specificity and sensitivity, and robust reproducibility, and its results can be monitored using a real-time PCR machine or visualized via colorimetric change from red to yellow. The limit of detection (LOD) of the assay is 118.6 copies of SARS-CoV-2 RNA per 25 μL reaction. The reaction can be completed within 30 min for real-time fluorescence monitoring, or 40 min for visual detection when the template input is more than 200 copies per 25 μL reaction. To evaluate the viability of the assay, a comparison between the RT-LAMP and a commercial RT-qPCR assay was made using 56 clinical samples. The SARS-CoV-2 RT-LAMP assay showed perfect agreement in detection with the RT-qPCR assay. The newly-developed SARS-CoV-2 RT-LAMP assay is a simple and rapid method for COVID-19 surveillance.


Author(s):  
Matthew A Lalli ◽  
Joshua S Langmade ◽  
Xuhua Chen ◽  
Catrina C Fronick ◽  
Christopher S Sawyer ◽  
...  

Abstract Background Rapid, reliable, and widespread testing is required to curtail the ongoing COVID-19 pandemic. Current gold-standard nucleic acid tests are hampered by supply shortages in critical reagents including nasal swabs, RNA extraction kits, personal protective equipment, instrumentation, and labor. Methods To overcome these challenges, we developed a rapid colorimetric assay using reverse-transcription loop-mediated isothermal amplification (RT-LAMP) optimized on human saliva samples without an RNA purification step. We describe the optimization of saliva pretreatment protocols to enable analytically sensitive viral detection by RT-LAMP. We optimized the RT-LAMP reaction conditions and implemented high-throughput unbiased methods for assay interpretation. We tested whether saliva pretreatment could also enable viral detection by conventional reverse-transcription quantitative polymerase chain reaction (RT-qPCR). Finally, we validated these assays on clinical samples. Results The optimized saliva pretreatment protocol enabled analytically sensitive extraction-free detection of SARS-CoV-2 from saliva by colorimetric RT-LAMP or RT-qPCR. In simulated samples, the optimized RT-LAMP assay had a limit of detection of 59 (95% confidence interval: 44–104) particle copies per reaction. We highlighted the flexibility of LAMP assay implementation using 3 readouts: naked-eye colorimetry, spectrophotometry, and real-time fluorescence. In a set of 30 clinical saliva samples, colorimetric RT-LAMP and RT-qPCR assays performed directly on pretreated saliva samples without RNA extraction had accuracies greater than 90%. Conclusions Rapid and extraction-free detection of SARS-CoV-2 from saliva by colorimetric RT-LAMP is a simple, sensitive, and cost-effective approach with broad potential to expand diagnostic testing for the virus causing COVID-19.


2021 ◽  
Author(s):  
Chuan Wu ◽  
Yuanyuan Zeng ◽  
Yang He

Abstract Staphylococcus aureus is a common clinical bacterial pathogen that can cause a diverse range of infections. The establishment of a rapid and reliable assay for the early diagnosis and detection of S. aureus is of great significance. In this study, we developed a closed-tube loop-mediated isothermal amplification (LAMP) assay for the visual detection of S. aureus using the colorimetric indicator hydroxy naphthol blue (HNB). The LAMP reaction was optimized by adjusting the amplification temperature, the concentrations of Mg2+, dNTP, and HNB, and the incubation time. In the optimized reaction system, the specificity of LAMP for S. aureus was 100%. The results established that this method accurately identified S. aureus, with no cross-reactivity with 16 non-S. aureus strains. The limit of detection (LOD) of LAMP was 8 copies/reaction of purified plasmid DNA or 400 colony-forming units/reaction of S. aureus. Compared with conventional PCR, LAMP lowered the LOD by 10-fold. Finally, 220 clinically isolated strains of S. aureus and 149 non-S. aureus strains were used to evaluate the diagnostic efficacy of LAMP. The findings indicated that LAMP is a reliable test for S. aureus and could be a promising tool for the rapid diagnosis of S. aureus infections.


Author(s):  
Gun-Soo Park ◽  
Keunbon Ku ◽  
Seung-Hwa Baek ◽  
Seong Jun Kim ◽  
Seung Il Kim ◽  
...  

AbstractEpidemics of Coronavirus Disease 2019 (COVID-19) now have more than 100,000 confirmed cases worldwide. Diagnosis of COVID-19 is currently performed by RT-qPCR methods, but the capacity of RT-qPCR methods is limited by its requirement of high-level facilities and instruments. Here, we developed and evaluated RT-LAMP assays to detect genomic RNA of SARS-CoV-2, the causative virus of COVID-19. RT-LAMP assays in this study can detect as low as 100 copies of SARS-CoV-2 RNA. Cross-reactivity of RT-LAMP assays to other human Coronaviruses was not observed. We also adapted a colorimetric detection method for our RT-LAMP assay so that the tests potentially performed in higher throughput.


Author(s):  
J. Mageto Ombega ◽  
Zhao-Hua Zhong

Background: Pseudomonas aeruginosa is among the most important causative agent of infection in chronically ill patients admitted in hospitals globally. Coupled with its, mixed symptomatology, rapid drug resistance tendency and its causation of severe disease, a fast, reliable and affordable diagnostic technique is required to enable healthcare providers expeditiously mitigate its progression and eventual treatment. The Loop-Mediated Isothermal Amplification (LAMP) technique has the potential to serve as a simple, rapid, specific, sensitive and cost-effective point-of-care diagnostic tool. Broad Objective: To investigate Loop Mediated Isothermal Amplification as a molecular technique for microbial diagnostic and prognostic predictor.   Study Design: This study was aimed at evaluating LAMP assay against Simple Polymerase chain reaction and Multiplex PCR on the diagnosis of P. aeruginosa in mixed clinical samples. Materials and Methods: This study developed P. aeruginosa Loop Mediated Isothermal Amplification (PaLAMP) assay to target the ExoY gene with appropriate primer testing and validation procedures. Culture of patient bacterial samples was done on MHA and MHB medium, grown overnight in an Incubator and a incubating shaker at 37oc respectively. Housekeeping gene were identified through online bioinformatics and blasted against known sequences. A set of 6 primers, comprising 2 outer primers (F3 and B3), 2 inner primers (FIP and BIP), and 2 loop primers (FLP and BLP), were designed. Microbial DNA extraction was done followed by PCR amplification as a classical identification using LAMP outer primers 9(F3 and B3). LAMP amplicons were detected by real time turbidimetry (LA-500) at 64°C for 40 minutes as well as under UV light with 1.0 μl of 1/10-diluted original SYBR Green I. Results: LAMP validation against traditional PCR shows a high limit of detection at 10-6ng/µl compared to 10-5ng/µl for PCR. The findings are consistent with outcomes for real time turbidimetric outcomes. Real time LAMP turbidimetric results was cross validated by direct observation through SYBR fluorescence under UV light for positive P. aeruginosa detection through positive amplification. Conclusion: Thus far, Loop mediated isothermal amplification show significantly high limit of detection comparable to standard PCR, its use in field based diagnosis offers an opportunity for a cheap, reliable and faster method to determine disease trends and therapy approaches. This method can be applied in primary care to enhance accuracy in diagnosis and thereby prompt initiation of mitigation treatment regimens.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9278 ◽  
Author(s):  
Yee Ling Lau ◽  
Ilyiana Ismail ◽  
Nur Izati Mustapa ◽  
Meng Yee Lai ◽  
Tuan Suhaila Tuan Soh ◽  
...  

Background Highly sensitive real-time reverse transcription polymerase chain reaction (RT-qPCR) methods have been developed for the detection of SARS-CoV-2. However, they are costly. Loop-mediated isothermal amplification (LAMP) assay has emerged as a novel alternative isothermal amplification method for the detection of nucleic acid. Methods A rapid, sensitive and specific real-time reverse transcription LAMP (RT-LAMP) assay was developed for SARS-CoV-2 detection. Results This assay detected one copy/reaction of SARS-CoV-2 RNA in 30 min. Both the clinical sensitivity and specificity of this assay were 100%. The RT-LAMP showed comparable performance with RT-qPCR. Combining simplicity and cost-effectiveness, this assay is therefore recommended for use in resource resource-limited settings.


2020 ◽  
Author(s):  
Deguo Wang

AbstractBackgroundRapid and reliable diagnostic assays were critical for prevention and control of the coronavirus pneumonia caused by COVID-19.ObjectiveThis study was to establish one-pot real-time reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay and one-pot visual RT-LAMP assay for the detection of COVID-19.MethodsSix specific LAMP primers targeting the N gene of COVID-19 were designed, the RT-LAMP reaction system was optimized with plasmid pUC57 containing N gene sequence, the detection limit was determined with a serial dilution of the plasmid pUC57 containing N gene sequence, and the one-pot real-time RT-LAMP assay and one-pot visual RT-LAMP assay for the detection of COVID-19 were established.ResultsOur results showed that the one-pot RT-LAMP assays can detect COVID-19 with a limit of ≥ 6 copies per μl−1 of pUC57 containing N gene sequence.ConclusionThis study provides rapid, reliable and sensitive tools for facilitating preliminary and cost-effective prevention and control of COVID-19.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Lena Mautner ◽  
Christin-Kirsty Baillie ◽  
Heike Marie Herold ◽  
Wolfram Volkwein ◽  
Patrick Guertler ◽  
...  

Abstract Background Fast, reliable and easy to handle methods are required to facilitate urgently needed point-of-care testing (POCT) in the current coronavirus pandemic. Life-threatening severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread all over the world, infecting more than 33,500,000 people and killing over 1 million of them as of October 2020. Infected individuals without any symptoms might still transfer the virus to others underlining the extraordinary transmissibility of this new coronavirus. In order to identify early infections effectively, treat patients on time and control disease spreading, rapid, accurate and onsite testing methods are urgently required. Results Here we report the development of a loop-mediated isothermal amplification (LAMP) based method to detect SARS-CoV-2 genes ORF8 and N directly from pharyngeal swab samples. The established reverse transcription LAMP (RT-LAMP) assay detects SARS-CoV-2 directly from pharyngeal swab samples without previous time-consuming and laborious RNA extraction. The assay is sensitive and highly specific for SARS-CoV-2 detection, showing no cross reactivity when tested on 20 other respiratory pathogens. The assay is 12 times faster and 10 times cheaper than routine reverse transcription real-time polymerase chain reaction, depending on the assay used. Conclusion The fast and easy to handle RT-LAMP assay amplifying specifically the genomic regions ORF8 and N of SARS-CoV-2 is ideally suited for POCT at e.g. railway stations, airports or hospitals. Given the current pandemic situation, rapid, cost efficient and onsite methods like the here presented RT-LAMP assay are urgently needed to contain the viral spread.


Sign in / Sign up

Export Citation Format

Share Document