scholarly journals Loop Mediated Isothermal Amplification as a Rapid Molecular Method for Pseudomonas aeruginosa T3SS ExoY Gene Septicemia Detection in Beta- Lactamase Species Co-Infections

Author(s):  
J. Mageto Ombega ◽  
Zhao-Hua Zhong

Background: Pseudomonas aeruginosa is among the most important causative agent of infection in chronically ill patients admitted in hospitals globally. Coupled with its, mixed symptomatology, rapid drug resistance tendency and its causation of severe disease, a fast, reliable and affordable diagnostic technique is required to enable healthcare providers expeditiously mitigate its progression and eventual treatment. The Loop-Mediated Isothermal Amplification (LAMP) technique has the potential to serve as a simple, rapid, specific, sensitive and cost-effective point-of-care diagnostic tool. Broad Objective: To investigate Loop Mediated Isothermal Amplification as a molecular technique for microbial diagnostic and prognostic predictor.   Study Design: This study was aimed at evaluating LAMP assay against Simple Polymerase chain reaction and Multiplex PCR on the diagnosis of P. aeruginosa in mixed clinical samples. Materials and Methods: This study developed P. aeruginosa Loop Mediated Isothermal Amplification (PaLAMP) assay to target the ExoY gene with appropriate primer testing and validation procedures. Culture of patient bacterial samples was done on MHA and MHB medium, grown overnight in an Incubator and a incubating shaker at 37oc respectively. Housekeeping gene were identified through online bioinformatics and blasted against known sequences. A set of 6 primers, comprising 2 outer primers (F3 and B3), 2 inner primers (FIP and BIP), and 2 loop primers (FLP and BLP), were designed. Microbial DNA extraction was done followed by PCR amplification as a classical identification using LAMP outer primers 9(F3 and B3). LAMP amplicons were detected by real time turbidimetry (LA-500) at 64°C for 40 minutes as well as under UV light with 1.0 μl of 1/10-diluted original SYBR Green I. Results: LAMP validation against traditional PCR shows a high limit of detection at 10-6ng/µl compared to 10-5ng/µl for PCR. The findings are consistent with outcomes for real time turbidimetric outcomes. Real time LAMP turbidimetric results was cross validated by direct observation through SYBR fluorescence under UV light for positive P. aeruginosa detection through positive amplification. Conclusion: Thus far, Loop mediated isothermal amplification show significantly high limit of detection comparable to standard PCR, its use in field based diagnosis offers an opportunity for a cheap, reliable and faster method to determine disease trends and therapy approaches. This method can be applied in primary care to enhance accuracy in diagnosis and thereby prompt initiation of mitigation treatment regimens.

2020 ◽  
Vol 21 (8) ◽  
pp. 2826 ◽  
Author(s):  
Renfei Lu ◽  
Xiuming Wu ◽  
Zhenzhou Wan ◽  
Yingxue Li ◽  
Xia Jin ◽  
...  

COVID-19 has become a major global public health burden, currently causing a rapidly growing number of infections and significant morbidity and mortality around the world. Early detection with fast and sensitive assays and timely intervention are crucial for interrupting the spread of the COVID-19 virus (SARS-CoV-2). Using a mismatch-tolerant amplification technique, we developed a simple, rapid, sensitive and visual reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for SARS-CoV-2 detection based on its N gene. The assay has a high specificity and sensitivity, and robust reproducibility, and its results can be monitored using a real-time PCR machine or visualized via colorimetric change from red to yellow. The limit of detection (LOD) of the assay is 118.6 copies of SARS-CoV-2 RNA per 25 μL reaction. The reaction can be completed within 30 min for real-time fluorescence monitoring, or 40 min for visual detection when the template input is more than 200 copies per 25 μL reaction. To evaluate the viability of the assay, a comparison between the RT-LAMP and a commercial RT-qPCR assay was made using 56 clinical samples. The SARS-CoV-2 RT-LAMP assay showed perfect agreement in detection with the RT-qPCR assay. The newly-developed SARS-CoV-2 RT-LAMP assay is a simple and rapid method for COVID-19 surveillance.


Author(s):  
Matthew A Lalli ◽  
Joshua S Langmade ◽  
Xuhua Chen ◽  
Catrina C Fronick ◽  
Christopher S Sawyer ◽  
...  

Abstract Background Rapid, reliable, and widespread testing is required to curtail the ongoing COVID-19 pandemic. Current gold-standard nucleic acid tests are hampered by supply shortages in critical reagents including nasal swabs, RNA extraction kits, personal protective equipment, instrumentation, and labor. Methods To overcome these challenges, we developed a rapid colorimetric assay using reverse-transcription loop-mediated isothermal amplification (RT-LAMP) optimized on human saliva samples without an RNA purification step. We describe the optimization of saliva pretreatment protocols to enable analytically sensitive viral detection by RT-LAMP. We optimized the RT-LAMP reaction conditions and implemented high-throughput unbiased methods for assay interpretation. We tested whether saliva pretreatment could also enable viral detection by conventional reverse-transcription quantitative polymerase chain reaction (RT-qPCR). Finally, we validated these assays on clinical samples. Results The optimized saliva pretreatment protocol enabled analytically sensitive extraction-free detection of SARS-CoV-2 from saliva by colorimetric RT-LAMP or RT-qPCR. In simulated samples, the optimized RT-LAMP assay had a limit of detection of 59 (95% confidence interval: 44–104) particle copies per reaction. We highlighted the flexibility of LAMP assay implementation using 3 readouts: naked-eye colorimetry, spectrophotometry, and real-time fluorescence. In a set of 30 clinical saliva samples, colorimetric RT-LAMP and RT-qPCR assays performed directly on pretreated saliva samples without RNA extraction had accuracies greater than 90%. Conclusions Rapid and extraction-free detection of SARS-CoV-2 from saliva by colorimetric RT-LAMP is a simple, sensitive, and cost-effective approach with broad potential to expand diagnostic testing for the virus causing COVID-19.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5993 ◽  
Author(s):  
Shao-Xin Cai ◽  
Fan-De Kong ◽  
Shu-Fei Xu ◽  
Cui-Luan Yao

Background Enterocytozoon hepatopenaei (EHP) is a newly emerged microsporidian parasite that causes retarded shrimp growth in many countries. But there are no effective approaches to control this disease to date. The EHP could be an immune risk factor for increased dissemination of other diseases. Further, EHP infection involves the absence of obvious clinical signs and it is difficult to identify the pathogen through visual examination, increasing the risk of disease dissemination. It is urgent and necessary to develop a specific, rapid and sensitive EHP-infected shrimp diagnostic method to detect this parasite. In the present study, we developed and evaluated a rapid real-time loop-mediated isothermal amplification (real-time LAMP) for detection of EHP. Methods A rapid and efficient real-time LAMP method for the detection of EHP has been developed. Newly emerged EHP pathogens in China were collected and used as the sample, and three sets of specificity and sensitivity primers were designed. Three other aquatic pathogens were used as templates to test the specificity of the real-time LAMP assay. Also, we compared the real-time LAMP with the conventional LAMP by the serial dilutions of EHP DNA and their amplification curves. Application of real-time LAMP was carried out with clinical samples. Results Positive products were amplified only from EHP, but not from other tested species, EHP was detected from the clinical samples, suggesting a high specificity of this method. The final results of this assay were available within less than 45 min, and the initial amplification curve was observed at about 6 min. We found that the amplification with an exponential of sixfold dilutions of EHP DNA demonstrated a specific positive signal by the real-time LAMP, but not for the LAMP amplicons from the visual inspection. The real-time LAMP amplification curves demonstrated a higher slope than the conventional LAMP. Discussion In this study, pathogen virulence impacts have been increased in aquaculture and continuous observation was predominantly focused on EHP. The present study confirmed that the real-time LAMP assay is a promising and convenient method for the rapid identification of EHP in less time and cost. Its application greatly aids in the detection, surveillance, and prevention of EHP.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244753
Author(s):  
Jeeyong Kim ◽  
Borae G. Park ◽  
Da Hye Lim ◽  
Woong Sik Jang ◽  
Jeonghun Nam ◽  
...  

Introduction The rapid and accurate diagnosis of tuberculosis (TB) is important to reduce morbidity and mortality rates and risk of transmission. Therefore, molecular detection methods such as a real-time PCR–based assay for Mycobacterium tuberculosis (MTB) have been commonly used for diagnosis of TB. Loop-mediated isothermal amplification (LAMP) assay was believed to be a simple, quick, and cost-effective isothermal nucleic acid amplification diagnostic test for infectious diseases. In this study, we designed an in-house multiplex LAMP assay for the differential detection of MTB and non-tuberculosis mycobacterium (NTM), and evaluated the assay using clinical samples. Material and methods For the multiplex LAMP assay, two sets of specific primers were designed: the first one was specific for IS6110 genes of MTB, and the second one was universal for rpoB genes of mycobacterium species including NTM. MTB was confirmed with a positive reaction with both primer sets, and NTM was identified with a positive reaction by only the second primer set without a MTB-specific reaction. Total 333 clinical samples were analyzed to evaluate the multiplex LAMP assay. Clinical samples were composed of 195 positive samples (72 MTB and 123NTM) and 138 negative samples. All samples were confirmed positivity or negativity by real-time PCR for MTB and NTM. Analytical sensitivity and specificity were evaluated for the multiplex LAMP assay in comparison with acid fast bacilli staining and the culture method. Results Of 123 NTM samples, 121 were identified as NTM and 72/72 MTB were identified as MTB by the multiplex LAMP assay. False negative reactions were seen only in two NTM positive samples with co-infection of Candida spp. All 138 negative samples were identified as negative for MTB and NTM. Analytical sensitivity of the multiplex LAMP assay was 100% (72/72) for MTB, and 98.4% (121/123) for NTM. And the specificity of assay was 100% (138/138) for all. Conclusions Our newly designed multiplex LAMP assay for MTB and NTM showed relatively good sensitivity in comparison with previously published data to detect isolated MTB. This multiplex LAMP assay is expected to become a useful tool for detecting and differentiating MTB from NTM rapidly at an acceptable sensitivity.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248042
Author(s):  
Woong Sik Jang ◽  
Da Hye Lim ◽  
Jung Yoon ◽  
Ahran Kim ◽  
Minsup Lim ◽  
...  

A newly identified coronavirus, designated as severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), has spread rapidly from its epicenter in China to more than 150 countries across six continents. In this study, we have designed three reverse-transcription loop-mediated isothermal amplification (RT-LAMP) primer sets to detect the RNA-dependent RNA polymerase (RdRP), Envelope (E) and Nucleocapsid protein (N) genes of SARS CoV-2. For one tube reaction, the detection limits for five combination SARS CoV-2 LAMP primer sets (RdRP/E, RdRP/N, E/N, RdRP/E/N and RdRP/N/Internal control (actin beta)) were evaluated with a clinical nasopharyngeal swab sample. Among the five combination, the RdRP/E and RdRP/N/IC multiplex LAMP assays showed low detection limits. The sensitivity and specificity of the RT-LAMP assay were evaluated and compared to that of the widely used Allplex™ 2019-nCoV Assay (Seegene, Inc., Seoul, South Korea) and PowerChek™ 2019-nCoV Real-time PCR kit (Kogenebiotech, Seoul, South Korea) for 130 clinical samples from 91 SARS CoV-2 patients and 162 NP specimens from individuals with (72) and without (90) viral respiratory infections. The multiplex RdRP (FAM)/N (CY5)/IC (Hex) RT-LAMP assay showed comparable sensitivities (RdRP: 93.85%, N: 94.62% and RdRP/N: 96.92%) to that of the Allplex™ 2019-nCoV Assay (100%) and superior to those of PowerChek™ 2019-nCoV Real-time PCR kit (RdRP: 92.31%, E: 93.85% and RdRP/E: 95.38%).


2020 ◽  
Vol 9 (1) ◽  
pp. 41
Author(s):  
Veronika Pilchová ◽  
Diana Seinige ◽  
Isabel Hennig-Pauka ◽  
Kathrin Büttner ◽  
Amir Abdulmawjood ◽  
...  

Glaesserella parasuis is a fastidious pathogen that colonizes the respiratory tract of pigs and can lead to considerable economic losses in pig production. Therefore, a rapid detection assay for the pathogen, preferably applicable in the field, is important. In the current study, we developed a new and improved detection method using loop-mediated isothermal amplification (LAMP). This assay, which targets the infB gene, was tested on a collection of 60 field isolates of G. parasuis comprising 14 different serovars. In addition, 63 isolates from seven different closely related species of the family Pasteurellaceae, including A. indolicus, A. porcinus, and A. minor, and a species frequently found in the respiratory tract of pigs were used for exclusivity experiments. This assay showed an analytical specificity of 100% (both inclusivity and exclusivity) and an analytical sensitivity of 10 fg/µL. In further steps, 36 clinical samples were tested with the LAMP assay. An agreement of 77.1 (95% CI: 59.9, 89.6) and 91.4% (95% CI: 75.9, 98.2) to the culture-based and PCR results was achieved. The mean limit of detection for the spiked bronchoalveolar lavage fluid was 2.58 × 102 CFU/mL. A colorimetric assay with visual detection by the naked eye was tested to provide an alternative method in the field and showed the same sensitivity as the fluorescence-based LAMP assay. Overall, the optimized LAMP assay represents a fast and reliable method and is suitable for detecting G. parasuis in the laboratory environment or in the field.


Author(s):  
Yi Wang ◽  
Xiaoxia Wang ◽  
Hai Chen ◽  
Limei Han ◽  
Licheng Wang ◽  
...  

The ongoing Corona virus disease (COVID-19) outbreak has become a huge global health concern. Here, we reported a novel detection platform based on the loop-mediated isothermal amplification (LAMP), termed real-time reverse transcription LAMP (rRT-LAMP) and applied it for the diagnosis of COVID-19 (COVID-19 rRT-LAMP). rRT-LAMP integrates reverse transcription, LAMP amplification, restriction endonuclease cleavage and real-time fluorescence detection into one-pot reaction, and facilitates the diagnosis of COVID-19 at 64°C for only 35 min. The ORF1ab (opening reading frame 1a/b) and NP (nucleoprotein) genes of SARS-CoV-2 were detected for diagnosing COVID-19. The limit of detection (LoD) of COVID-19 rRT-LAMP assay was 14 copies (for each marker) per vessel, and no positive results were obtained from non-SARS-CoV-2 templates. To demonstrate its feasibility, a total of 33 oropharynx swab samples collected from COVID-19 patients also were diagnosed as SARS-CoV-2 infection using COVID-19 rRT-LAMP protocol. No cross-reactivity was yielded from 41 oropharynx swab samples collected from non-COVID-19 patients. These data suggesting that the COVID-19 rRT-LAMP assay is a potential detection tool for the diagnosis of SARS-CoV-2 infection in clinical, field and disease control laboratories, and will be valuable for controlling the COVID-19 epidemic.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2187
Author(s):  
Paulina Rajko-Nenow ◽  
Emma L. A. Howson ◽  
Duncan Clark ◽  
Natasha Hilton ◽  
Aruna Ambagala ◽  
...  

Epizootic haemorragic disease (EHD) is an important disease of white-tailed deer and can cause a bluetongue-like illness in cattle. A definitive diagnosis of EHD relies on molecular assays such as real-time RT-qPCR or conventional PCR. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a cost-effective, specific, and sensitive technique that provides an alternative to RT-qPCR. We designed two sets of specific primers targeting segment-9 of the EHD virus genome to enable the detection of western and eastern topotypes, and evaluated their performance in singleplex and multiplex formats using cell culture isolates (n = 43), field specimens (n = 20), and a proficiency panel (n = 10). The limit of detection of the eastern and western RT-LAMP assays was estimated as ~24.36 CT and as ~29.37 CT in relation to real-time RT-qPCR, respectively, indicating a greater sensitivity of the western topotype singleplex RT-LAMP. The sensitivity of the western topotype RT-LAMP assay, relative to the RT-qPCR assay, was 72.2%, indicating that it could be theoretically used to detect viraemic cervines and bovines. For the first time, an RT-LAMP assay was developed for the rapid detection of the EHD virus that could be used as either a field test or high throughput screening tool in established laboratories to control the spread of EHD.


Author(s):  
James Woodhall ◽  
Miranda Harrington ◽  
Lara Brown ◽  
Jennifer Jensen ◽  
Kate Painter

Stromatinia cepivora is the causal agent of white rot disease of Allium species. In 2018, white rot was observed in Boundary county in Northern Idaho in garlic and onion plants in a variety of home and market garden operations. As the university diagnostic lab for Idaho is situated in Parma within a regulated area for Stromatinia cepivora, a point of care (POC) assay using real-time loop mediated isothermal amplification (LAMP) was developed to minimize the amount of material potentially sent to the diagnostic lab. The LAMP assay was used with a BioRanger platform and although the limit of detection was one hundred times less than TaqMan, it was capable of detecting a single sclerotia. This study demonstrates the rapid development and deployment of a POC suitable LAMP assay. Despite limitations in sensitivity and dynamic range compared to real-time PCR, POC LAMP assays are advantageous where biosecurity concerns prohibit the movement of material suitable for diagnosis as well as facilitating engagement with growers.


Sign in / Sign up

Export Citation Format

Share Document