scholarly journals Towards a Planar Cruciform Specimen for Biaxial Characterisation of Polymer Matrix Composites

2010 ◽  
Vol 24-25 ◽  
pp. 115-120 ◽  
Author(s):  
Michael R.L. Gower ◽  
Richard M. Shaw

This paper details work undertaken towards the development of a standard test method for the biaxial response of planar cruciform specimens manufactured from carbon fibre-reinforced plastic (CFRP) laminates and subject to tension-tension loading. Achieving true biaxial failure in a cruciform specimen without the need for the inclusion of a stress raiser, such as a hole, in the gauge-section, is a subject attracting much research globally and is by no means a trivial exercise. Coupon designs were modelled using finite element analysis (FEA) in order to predict the stress and strain distributions in the central region of the specimen. An Instron biaxial strong-floor test machine was used to test the specimens. Strain gauges were used to measure the strain in the specimen arms and to assess the degree of bending. Digital image correlation (DIC) was used to measure the full-field strain distribution in the central gauge-section of the specimen and this was compared to values measured using strain gauges. The strain readings obtained from strain gauges, DIC and FEA predictions were in good agreement and showed that the strain distribution was uniform in the central gauge-section, but that strain concentrations existed around the tapered thickness zone. These regions of strain concentration resulted in interlaminar failure and delamination of the laminate propagating into the specimen arms.

2010 ◽  
Vol 112 ◽  
pp. 49-62 ◽  
Author(s):  
Sébastien Mistou ◽  
Marina Fazzini ◽  
Moussa Karama

The purpose of this work is to study the Iosipescu shear test and more precisely its ability to characterize the shear modulus of a carbone/epoxy composite material. The parameters influencing this identification are the fibre orientation, the geometry of the notch and the boundary conditions. Initially these parameters were studied through the finite element analysis of the shear test. Then, the measurement of the shear strains was carried out by traditional methods of measurement (strain gauges) but also by optical methods. These optical methods: the digital image correlation and the electronic speckle pattern interferometry (ESPI); allow for various levels of loading, to reach a full-field measurement of the shear strain. This enabled us to study the strain distribution on the section between the two notches. The finite element model enabled us to study the parameters influencing the calculation of the shear modulus in comparison with strain gauges, image correlation and ESPI. This work makes it possible to conclude on optimal parameters for the Iosipescu test.


2015 ◽  
Vol 738-739 ◽  
pp. 889-892
Author(s):  
Qiang Li ◽  
Hong Fa Yu ◽  
Jing Tong

Cracking of the cover concrete due to steel corrosion is considered as one of the major issues of durability of reinforced concrete (RC) structures. This paper tentatively studies the feasibility of DIC to reinforcement corrosion induced concrete fracture and cover cracking measurement. Advantages and limitations of DIC-based non-contact full-field measurement for corrosion induced concrete fracture and cover cracking are discussed. Drawbacks in this test need improvement are pointed out and test method for further study of whole process of simulating the real reinforced concrete cracking is put forward.


2013 ◽  
Vol 569-570 ◽  
pp. 799-804
Author(s):  
Duncan A. Crump ◽  
Janice M. Dulieu-Barton

Polymer closed cell foam beam specimens manufactured from H100 Divinycell (Diab) are tested in four point bend at three loading speeds using a specially designed rig and an Instron VHS test machine. Synchronised high speed images are captured using white light and infra-red thermography (IRT) to obtain the mid-point full-field deflection and strains using digital image correlation (DIC) along with the temperature evolutions. There is a marked increase in the maximum load to failure with loading rate and the optical techniques provide an opportunity to analyse the strain and temperature evolution within the specimens.


2012 ◽  
Vol 4 ◽  
pp. 73-81 ◽  
Author(s):  
J. Neggers ◽  
J.P.M. Hoefnagels ◽  
F. Hild ◽  
S. Roux ◽  
M.G.D. Geers

2021 ◽  
Vol 8 (9) ◽  
pp. 210916
Author(s):  
W. J. R. Christian ◽  
A. D. Dean ◽  
K. Dvurecenska ◽  
C. A. Middleton ◽  
E. A. Patterson

A new decomposition algorithm based on QR factorization is introduced for processing and comparing irregularly shaped stress and deformation datasets found in structural analysis. The algorithm improves the comparison of two-dimensional data fields from the surface of components where data is missing from the field of view due to obstructed measurement systems or component geometry that results in areas where no data is present. The technique enables the comparison of these irregularly shaped datasets without the need for interpolation or warping of the data necessary in some other decomposition techniques, for example, Chebyshev or Zernike decomposition. This ensures comparisons are only made between the available data in each dataset and thus similarity metrics are not biased by missing data. The decomposition and comparison technique has been applied during an impact experiment, a modal analysis, and a fatigue study, with the stress and displacement data obtained from finite-element analysis, digital image correlation and thermoelastic stress analysis. The results demonstrate that the technique can be used to process data from a range of sources and suggests the technique has the potential for use in a wide variety of applications.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
M. Arza-García ◽  
C. Núñez-Temes ◽  
J. A. Lorenzana ◽  
J. Ortiz-Sanz ◽  
A. Castro ◽  
...  

AbstractDue to their cost, high-end commercial 3D-DIC (digital image correlation) systems are still inaccessible for many laboratories or small factories interested in lab testing materials. These professional systems can provide reliable and rapid full-field measurements that are essential in some laboratory tests with high-strain rate events or high dynamic loading. However, in many stress-controlled experiments, such as the Brazilian tensile strength (BTS) test of compacted soils, samples are usually large and fail within a timeframe of several minutes. In those cases, alternative low-cost methods could be successfully used instead of commercial systems. This paper proposes a methodology to apply 2D-DIC techniques using consumer-grade cameras and the open-source image processing software DICe (Sandia National Lab) for monitoring the standardized BTS test. Unlike most previous studies that theoretically estimate systematic errors or use local measures from strain gauges for accuracy assessment, we propose a contrast methodology with independent full-field measures. The displacement fields obtained with the low-cost system are benchmarked with the professional stereo-DIC system Aramis-3D (GOM GmbH) in four BTS experiments using compacted soil specimens. Both approaches proved to be valid tools for obtaining full-field measurements and showing the sequence of crack initiation, propagation and termination in the BTS, constituting reliable alternatives to traditional strain gauges. Mean deviations obtained between the low-cost 2D-DIC approach and Aramis-3D in measuring in-plane components were 0.08 mm in the perpendicular direction of loading (ΔX) and 0.06 mm in the loading direction (ΔY). The proposed low-cost approach implies considerable savings compared to commercial systems.


Author(s):  
Pedro Barros ◽  
Agnes Marie Horn ◽  
Anders Wormsen ◽  
Per Osen ◽  
Kenneth A. Macdonald

Abstract For subsea well drilling, the drilling rig is connected to the subsea well by a marine riser and subsea BOP equipped with a remotely controlled wellhead connector latched onto the subsea wellhead profile. The level of cyclic loading on subsea wellheads is steadily increasing due to use of increasingly larger drilling rigs with larger BOPs, the drilling of wells in harsher environments characterized by strong high waves. The remotely controlled wellhead connector forces a series of locking dogs into an externally machined profile on the wellhead. This external profile is generally referred to as a wellhead profile. The fatigue resistance of this safety-critical connection is typically estimated by FE analysis. Due to the large size of the equipment, and high cost of testing, very limited fatigue testing, if any, has been carried out. A test method has therefore been developed, where a special test fixture is used to apply realistic boundary conditions and variable tensile loads to a small sector or segment of a wellhead connector. A primary objective is to generate fatigue-critical stress fields in the segments under tensile test load that closely replicates the stress fields in a full-scale connector subject to bending loads. A secondary objective is to support the introduction of the practice of testing several segments cut from a single wellhead connector. The testing of narrow sector segments allows the use of readily available test apparatus. It is thereby envisaged that the total cost of testing (specimens and test laboratory costs) can be substantially reduced in comparison with full-scale connector fatigue testing. This paper describes the text fixture, the connector locking dog, and wellhead segments designed to replicate the stress fields in a full-scale wellhead connector. The test fixture and test specimens are designed to match conditions and fatigue stress of the full-scale connector. The test specimens are instrumented with strain gauges at fatigue hotspots. Digital image correlation (DIC) is used to measure the relative motion between the wellhead segment and the locking dog. The measured strains are compared with corresponding values from finite element analysis of the test. The DIC results are also used for estimating the coefficient of friction between wellhead profile and locking dog. Very good agreement is found between measured hotspot strains and strains from the FE analyses for consistent load conditions. The test fixture is therefore considered suitable for segment fatigue testing, where the test results can be used to estimate the bending fatigue capacity of a full-scale wellhead connector. Results from fatigue testing by this test method are presented in a separate OMAE2020 paper.


Author(s):  
Yue Zhang ◽  
Jianfeng Shi ◽  
Jinyang Zheng

Electrofusion joint plays an important role in connecting polyethylene (PE) pipe. In our previous study, penetrating crack failure through the fitting with an angle of about 70° was observed, and axial stress was found to be an important factor in the crack propagation. In this paper, experiments were carried out to study the crack propagation phenomena of the electrofusion joint of PE pipe. Digital Image Correlation (DIC) method was used to measure the displacement on specimen’s surface, as well as full-field strain distribution, based on which the J-integral of the crack tip was calculated. Besides, a finite element numerical simulation was conducted, and its accuracy was verified by experimental J-integral value. Through combination of experimental observations and finite element method, the phenomenon that the angle between crack propagation direction and tube axial is about 70° is detailed analysed. By comparison and analysis of the testing results, critical J-integral value during crack propagation is determined. Furthermore, critical J-integral value of crack propagation in electrofusion joint is predicted.


2018 ◽  
Vol 165 ◽  
pp. 05003 ◽  
Author(s):  
Audun Johanson ◽  
Luigi Mario Viespoli ◽  
Bård Nyhus ◽  
Antonio Alvaro ◽  
Filippo Berto

The work here presented focuses on the test methodology related to effect of stress concentrators in strain controlled structures. Cable sheathing as used in subsea power cables are investigated by cyclic fatigue testing, Digital Image Correlation (DIC) and 3D Finite Element Analysis. Focus is put on the strain distribution in conventional specimen geometries and under the presence of artificial notches. It is evident that standardized fatigue testing provides limited input to the final fatigue life of strain controlled power cable sheathing both accounting for expected and unintended stress concentrators. The limitations can be explained by measured strain distribution inherent in most fatigue test specimens. The use of DIC and 3D FEM provides valuable insight into both the theoretical and practical stress and strain distribution. This can help in understanding and overcoming geometrical test constraints, when compared to the actual component loading mode.


Sign in / Sign up

Export Citation Format

Share Document