scholarly journals Tumor Microenvironment Profiles Reveal Distinct Therapy-Oriented Proteogenomic Characteristics in Colorectal Cancer

Author(s):  
Nan Wang ◽  
Rongshui Wang ◽  
Xia Li ◽  
Zhentao Song ◽  
Lingbo Xia ◽  
...  

Advances in immunotherapy have made an unprecedented leap in treating colorectal cancer (CRC). However, more effective therapeutic regimes need a deeper understanding of molecular architectures for precise patient stratification and therapeutic improvement. We profiled patients receiving neoadjuvant chemotherapy alone or in combination with immunotherapy (PD-1 checkpoint inhibitor) using Digital Spatial Profiler (DSP), a high-plex spatial proteogenomic technology. Compartmentalization-based high-plex profiling of both proteins and mRNAs revealed pronounced immune infiltration at tumor regions associated with immunotherapy treatment. The protein and the corresponding mRNA levels within the same selected regions of those patient samples correlate, indicating an overall concordance between the transcriptional and translational levels. An elevated expression of PD-L1 at both protein and the mRNA levels was discovered in the tumor compartment of immunotherapy-treated patients compared with chemo-treated patients, indicating potential prognostic biomarkers are explorable in a spatial manner at the local tumor microenvironment (TME). An elevated expression of PD-L1 was verified by immunohistochemistry. Other compartment-specific biomarkers were also differentially expressed between the tumor and stromal regions, indicating a dynamic interplay that can potentiate novel biomarker discovery from the TME perspectives. Simultaneously, a high-plex spatial profiling of protein and mRNA in the tumor microenvironment of colorectal cancer was performed.

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2533 ◽  
Author(s):  
Min Seob Kim ◽  
Hyun Seok Choi ◽  
Moxin Wu ◽  
JiYeon Myung ◽  
Eui Joong Kim ◽  
...  

Colorectal cancer is a significant cause of death since it frequently metastasizes to several organs such as the lung or liver. Tumor development is affected by various factors, including a tumor microenvironment, which may be an essential factor that leads to tumor growth, proliferation, invasion, and metastasis. In the tumor microenvironment, abnormal changes in various growth factors, enzymes, and cytokines can wield a strong influence on cancer. Thrombospondin-4 (THBS4), which is an extracellular matrix protein, also plays essential roles in the tumor microenvironment and mediates angiogenesis by transforming growth factor-β (TGFβ) signaling. Platelet-derived growth factor receptor β (PDGFRβ), which is a receptor tyrosine kinase and is also a downstream signal of TGFβ, is associated with invasion and metastasis in colorectal cancer. We identified that PDGFRβ and THBS4 are overexpressed in tumor tissues of colorectal cancer patients, and that PDGF-D expression increased after TGFβ treatment in the colon cancer cell line DLD-1. TGFβ and PDGF-D increased cellular THBS4 protein levels and secretion but did not increase THBS4 mRNA levels. This response was further confirmed by the inositol 1,4,5-triphosphate receptor (IP3R) and stromal interaction molecule 1 (STIM1) blockade as well as the PDGFRβ blockade. We propose that the PDGFRβ signal leads to a modification of the incomplete form of THBS4 to its complete form through IP3R, STIM1, and Ca2+-signal proteins, which further induces THBS4 secretion. Additionally, we identified that DLD-1 cell-conditioned medium stimulated with PDGF-D promotes adhesion, migration, and proliferation of colon myofibroblast CCD-18co cells, and this effect was intensified in the presence of thrombin. These findings suggest that excessive PDGFRβ signaling due to increased TGFβ and PDGF-D in colorectal tumors leads to over-secretion of THBS4 and proliferative tumor development.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A255-A256
Author(s):  
Omar Jabado ◽  
Suzana Couto ◽  
Jordan Blum ◽  
Patrick Franken ◽  
Patricia Coutinho de Souza ◽  
...  

BackgroundUnderstanding the dynamics of immune cells in the lung tumor microenvironment following immune checkpoint inhibitor (ICI) therapy is important for developing therapies tailored to patients with progressive disease. We sought to characterize protein and mRNA biomarkers in the tumor and stromal microenvironment in such patients with the Nanostring Digital Spatial Profiling (DSP) platform. DSP technology allows highly multiplexed profiling of proteins and RNA in a spatially resolved manner.MethodsFFPE non-small lung adenocarcinoma biopsies from 18 patients were sourced commercially (Capital Biosciences, MD). Patients had surgical resection of tumors then adjuvant chemotherapy. Upon progression, patients received monotherapy ICI (nivolumab or pembrolizumab). Once progressed on ICI, biopsies were performed and patients were then treated with platinum-doublet or single agent chemotherapy and followed until progression and/or death. Best overall response (BOR) and progression free survival (PFS) was available for ICI. FFPE tumors were sectioned and stained with anti-Pan-Cytokeratin, anti-PDL1 and anti-4-1BB (CD137) using standard immunofluorescence techniques. Twelve circular regions of ~400 um in diameter containing tumor (PanCK+) and stromal (PanCK-) areas were selected per patient (figure 1). The technology uses a photocleavable DNA barcode strategy to multiplex antibodies and RNA in-situ hybridization probes. The GeoMX instrument was used to generate counts for 58 proteins and 84 RNAs on serial sections. Data normalization, linear modeling and survival analysis was conducted in R.ResultsLymphoid and myeloid markers were more abundant in stroma, indicating the microenvironment is diverse and confirming the DSP platform can segment adjacent cells. High levels of PDL1 protein in the tumor were correlated with T cell markers in the stroma (CD3, CD8, ICOS, IDO, OX40L) and inversely correlated with granulocytic (CD66b) and angiogenesis markers (CD34). We focused outcomes analysis on ICI response (9 PD/9 PR). OX40L protein was higher in patients with partial response and associated with delayed progression (figure 2). CD74 protein was associated with progressive disease during ICI therapy. CSF1R, CD4 and PECAM1 mRNA expression levels in stroma trended with progressive disease.Abstract 238 Figure 1Immunofluorescence staining and segmentation of NSCLC tumorAbstract 238 Figure 2Association of OX40L abundance in stroma with PFS using Kaplan-Meier analysisConclusionsIn this study we recapitulated the role of OX40L as a marker for response to ICI1 and CSF1R and PECAM1 in non-response to ICI.2. 3 CD74 is a receptor for the pro-inflammatory cytokine (MIF) however CD74 ectodomain shedding may function as a decoy receptor.4 These findings highlight how DSP can be used to probe the tumor microenvironment to identify pathways specific to NSCLC non-response for therapeutic target and biomarker development.Ethics ApprovalSubjects provided informed consent to Capital Biosciences for genetic and protein analysis.AcknowledgementsLiang Zhang, Adrienne Whitman, Jennifer Hart, JingJing Gong of Nanostring Technologies.ReferencesMassarelli E, Lam VK, Parra ER, et al. High OX-40 expression in the tumor immune infiltrate is a favorable prognostic factor of overall survival in non-small cell lung cancer. J Immunother Cancer 2019;7(1):351.Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH, Rüttinger D. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer 2017;5(1):53.Kuang BH, Wen XZ, Ding Y, et al. The prognostic value of platelet endothelial cell adhesion molecule-1 in non-small-cell lung cancer patients. Med Oncol 2013;30(2):536.Schröder B. The multifaceted roles of the invariant chain CD74-More than just a chaperone. Biochim Biophys Acta 2016;1863(6 Pt A):1269–1281.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Zhang ◽  
Zhaohui Zhong ◽  
Mei Li ◽  
Jingyi Chen ◽  
Tingru Lin ◽  
...  

AbstractAbnormally expressed and/or phosphorylated Abelson interactor 1 (ABI1) participates in the metastasis and progression of colorectal cancer (CRC). ABI1 presents as at least 12 transcript variants (TSVs) by mRNA alternative splicing, but it is unknown which of them is involved in CRC metastasis and prognosis. Here, we firstly identified ABI1-TSV-11 as a key TSV affecting the metastasis and prognosis of left-sided colorectal cancer (LsCC) and its elevated expression is related to lymph node metastasis and shorter overall survival (OS) in LsCC by analyzing data from The Cancer Genome Atlas and TSVdb. Secondly, ABI1-TSV-11 overexpression promoted LoVo and SW480 cells adhesion and migration in vitro, and accelerated LoVo and SW480 cells lung metastasis in vivo. Finally, mechanism investigations revealed that ABI1-isoform-11 interacted with epidermal growth factor receptor pathway substrate 8 (ESP8) and regulated actin dynamics to affect LoVo and SW480 cells biological behaviors. Taken together, our data demonstrated that ABI1-TSV-11 plays an oncogenic role in LsCC, it is an independent risk factor of prognosis and may be a potential molecular marker and therapeutic target in LsCC.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 189
Author(s):  
Linda Bilonda Mutala ◽  
Cécile Deleine ◽  
Matilde Karakachoff ◽  
Delphine Dansette ◽  
Kathleen Ducoin ◽  
...  

In colorectal cancer (CRC), a high density of T lymphocytes represents a strong prognostic marker in subtypes of CRC. Optimized immunotherapy strategies to boost this T-cell response are still needed. A good candidate is the inflammasome pathway, an emerging player in cancer immunology that bridges innate and adaptive immunity. Its effector protein caspase-1 matures IL-18 that can promote a T-helper/cytotoxic (Th1/Tc1) response. It is still unknown whether tumor cells from CRC possess a functional caspase-1/IL-18 axis that could modulate the Th1/Tc1 response. We used two independent cohorts of CRC patients to assess IL-18 and caspase-1 expression by tumor cells in relation to the density of TILs and the microsatellite status of CRC. Functional and multiparametric approaches at the protein and mRNA levels were performed on an ex vivo CRC explant culture model. We show that, in the majority of CRCs, tumor cells display an activated and functional caspase-1/IL-18 axis that contributes to drive a Th1/Tc1 response elicited by TILs expressing IL-18Rα. Furthermore, unsupervised clustering identified three clusters of CRCs according to the caspase-1/IL-18/TIL density/interferon gamma (IFNγ) axis and microsatellite status. Together, our results strongly suggest that targeting the caspase-1/IL-18 axis can improve the anti-tumor immune response in subgroups of CRC.


Author(s):  
Yan Zhong ◽  
Ting Long ◽  
Chuan-Sha Gu ◽  
Jing-Yi Tang ◽  
Ling-Fang Gao ◽  
...  

AbstractTumour metastasis is a major reason accounting for the poor prognosis of colorectal cancer (CRC), and the discovery of targets in the primary tumours that can predict the risk of CRC metastasis is now urgently needed. In this study, we identified autophagy-related protein 9B (ATG9B) as a key potential target gene for CRC metastasis. High expression of ATG9B in tumour significantly increased the risk of metastasis and poor prognosis of CRC. Mechanistically, we further find that ATG9B promoted CRC invasion mainly through autophagy-independent manner. MYH9 is the pivotal interacting protein for ATG9B functioning, which directly binds to cytoplasmic peptide segments aa368–411 of ATG9B by its head domain. Furthermore, the combination of ATG9B and MYH9 enhance the stability of each other by decreasing their binding to E3 ubiquitin ligase STUB1, therefore preventing them from ubiquitin-mediated degradation, which further amplified the effect of ATG9B and MYH9 in CRC cells. During CRC cell invasion, ATG9B is transported to the cell edge with the assistance of MYH9 and accelerates focal adhesion (FA) assembly through mediating the interaction of endocytosed integrin β1 and Talin-1, which facilitated to integrin β1 activation. Clinically, upregulated expression of ATG9B in human CRC tissue is always accompanied with highly elevated expression of MYH9 and associated with advanced CRC stage and poor prognosis. Taken together, this study highlighted the important role of ATG9B in CRC metastasis by promoting focal adhesion assembly, and ATG9B together with MYH9 can provide a pair of potential therapeutic targets for preventing CRC progression.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Chenyang Qiao ◽  
Wenjie Huang ◽  
Jie Chen ◽  
Weibo Feng ◽  
Tongyue Zhang ◽  
...  

AbstractMetastasis is the major reason for the high mortality of colorectal cancer (CRC) patients and its molecular mechanism remains unclear. Here, we report a novel role of Homeobox A13 (HOXA13), a member of the Homeobox (HOX) family, in promoting CRC metastasis. The elevated expression of HOXA13 was positively correlated with distant metastasis, higher AJCC stage, and poor prognosis in two independent CRC cohorts. Overexpression of HOXA13 promoted CRC metastasis whereas downregulation of HOXA13 suppressed CRC metastasis. Mechanistically, HOXA13 facilitated CRC metastasis by transactivating ATP-citrate lyase (ACLY) and insulin-like growth factor 1 receptor (IGF1R). Knockdown of ACLY and IGFIR inhibited HOXA13-medicated CRC metastasis, whereas ectopic overexpression of ACLY and IGFIR rescued the decreased CRC metastasis induced by HOXA13 knockdown. Furthermore, Insulin-like growth factor 1 (IGF1), the ligand of IGF1R, upregulated HOXA13 expression through the PI3K/AKT/HIF1α pathway. Knockdown of HOXA13 decreased IGF1-mediated CRC metastasis. In addition, the combined treatment of ACLY inhibitor ETC-1002 and IGF1R inhibitor Linsitinib dramatically suppressed HOXA13-mediated CRC metastasis. In conclusion, HOXA13 is a prognostic biomarker in CRC patients. Targeting the IGF1-HOXA13-IGF1R positive feedback loop may provide a potential therapeutic strategy for the treatment of HOXA13-driven CRC metastasis.


2021 ◽  
Vol 11 (6) ◽  
pp. 535
Author(s):  
Bader Almuzzaini ◽  
Jahad Alghamdi ◽  
Alhanouf Alomani ◽  
Saleh AlGhamdi ◽  
Abdullah A. Alsharm ◽  
...  

Biomarker discovery would be an important tool in advancing and utilizing the concept of precision and personalized medicine in the clinic. Discovery of novel variants in local population provides confident targets for developing biomarkers for personalized medicine. We identified the need to generate high-quality sequencing data from local colorectal cancer patients and understand the pattern of occurrence of variants. In this report, we used archived samples from Saudi Arabia and used the AmpliSeq comprehensive cancer panel to identify novel somatic variants. We report a comprehensive analysis of next-generation sequencing results with a coverage of >300X. We identified 466 novel variants which were previously unreported in COSMIC and ICGC databases. We analyzed the genes associated with these variants in terms of their frequency of occurrence, probable pathogenicity, and clinicopathological features. Among pathogenic somatic variants, 174 were identified for the first time in the large intestine. APC, RET, and EGFR genes were most frequently mutated. A higher number of variants were identified in the left colon. Occurrence of variants in ERBB2 was significantly correlated with those of EGFR and ATR genes. Network analyses of the identified genes provide functional perspective of the identified genes and suggest affected pathways and probable biomarker candidates. This report lays the ground work for biomarker discovery and identification of driver gene mutations in local population.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Xiaoqiang Zhu ◽  
Xianglong Tian ◽  
Linhua Ji ◽  
Xinyu Zhang ◽  
Yingying Cao ◽  
...  

AbstractStudies have shown that tumor microenvironment (TME) might affect drug sensitivity and the classification of colorectal cancer (CRC). Using TME-specific gene signature to identify CRC subtypes with distinctive clinical relevance has not yet been tested. A total of 18 “bulk” RNA-seq datasets (total n = 2269) and four single-cell RNA-seq datasets were included in this study. We constructed a “Signature associated with FOLFIRI resistant and Microenvironment” (SFM) that could discriminate both TME and drug sensitivity. Further, SFM subtypes were identified using K-means clustering and verified in three independent cohorts. Nearest template prediction algorithm was used to predict drug response. TME estimation was performed by CIBERSORT and microenvironment cell populations-counter (MCP-counter) methods. We identified six SFM subtypes based on SFM signature that discriminated both TME and drug sensitivity. The SFM subtypes were associated with distinct clinicopathological, molecular and phenotypic characteristics, specific enrichments of gene signatures, signaling pathways, prognosis, gut microbiome patterns, and tumor lymphocytes infiltration. Among them, SFM-C and -F were immune suppressive. SFM-F had higher stromal fraction with epithelial-to-mesenchymal transition phenotype, while SFM-C was characterized as microsatellite instability phenotype which was responsive to immunotherapy. SFM-D, -E, and -F were sensitive to FOLFIRI and FOLFOX, while SFM-A, -B, and -C were responsive to EGFR inhibitors. Finally, SFM subtypes had strong prognostic value in which SFM-E and -F had worse survival than other subtypes. SFM subtypes enable the stratification of CRC with potential chemotherapy response thereby providing more precise therapeutic options for these patients.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 733
Author(s):  
Nobutaka Ebata ◽  
Masashi Fujita ◽  
Shota Sasagawa ◽  
Kazuhiro Maejima ◽  
Yuki Okawa ◽  
...  

Gallbladder cancer (GBC), a rare but lethal disease, is often diagnosed at advanced stages. So far, molecular characterization of GBC is insufficient, and a comprehensive molecular portrait is warranted to uncover new targets and classify GBC. We performed a transcriptome analysis of both coding and non-coding RNAs from 36 GBC fresh-frozen samples. The results were integrated with those of comprehensive mutation profiling based on whole-genome or exome sequencing. The clustering analysis of RNA-seq data facilitated the classification of GBCs into two subclasses, characterized by high or low expression levels of TME (tumor microenvironment) genes. A correlation was observed between gene expression and pathological immunostaining. TME-rich tumors showed significantly poor prognosis and higher recurrence rate than TME-poor tumors. TME-rich tumors showed overexpression of genes involved in epithelial-to-mesenchymal transition (EMT) and inflammation or immune suppression, which was validated by immunostaining. One non-coding RNA, miR125B1, exhibited elevated expression in stroma-rich tumors, and miR125B1 knockout in GBC cell lines decreased its invasion ability and altered the EMT pathway. Mutation profiles revealed TP53 (47%) as the most commonly mutated gene, followed by ELF3 (13%) and ARID1A (11%). Mutations of ARID1A, ERBB3, and the genes related to the TGF-β signaling pathway were enriched in TME-rich tumors. This comprehensive analysis demonstrated that TME, EMT, and TGF-β pathway alterations are the main drivers of GBC and provides a new classification of GBCs that may be useful for therapeutic decision-making.


Sign in / Sign up

Export Citation Format

Share Document