scholarly journals Systemic Perspectives on National Infrastructure for a Sustainable, Resilient Net Zero Future

2021 ◽  
Vol 7 ◽  
Author(s):  
Tom Dolan

All aspects of Modern life are infrastructure-enabled. National infrastructure (NI) simultaneously: supports the realisation of societally beneficial outcomes; and determines the level of GHG emissions; air, water, noise pollution; production of solid waste and sewage. Therefore, all sustainability and resilience challenges are interdependent emergent properties arising directly or indirectly from National Infrastructure. NI is a systemically, societally, economically, globally significant leverage point. The systemic transformation of NI into a net zero enabling, resilience enhancing, sustainability supporting system is urgently needed to catalyse the speed, scale and breadth of synergistic action needed to achieve Net zero and tackle other sustainability and resilience challenges. Systemic perspectives on, and systemic characterisations of, NI; its societal purpose; and the interdependent mechanisms that enable NI to fulfil its purpose are needed to support the required systemic transformation. This paper provides these.

Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 95
Author(s):  
Ghazal Makvandia ◽  
Md. Safiuddin

Efforts have been put in place to minimize the effects of construction activities and occupancy, but the problem of greenhouse gas (GHG) emissions continues to have detrimental effects on the environment. As an effort to reduce GHG emissions, particularly carbon emissions, countable commercial, industrial, institutional, and residential net-zero energy (NZE) buildings were built around the globe during the past few years, and they are still operating. But there exist many challenges and barriers for the construction of NZE buildings. This study identifies the obstacles to developing NZE buildings, with a focus on single-family homes, in the Greater Toronto Area (GTA). The study sought to identify the technical, organizational, and social challenges of constructing NZE buildings, realize the importance of the public awareness in making NZE homes, and provide recommendations on how to raise public knowledge. A qualitative approach was employed to collect the primary data through survey and interviews. The secondary data obtained from the literature review were also used to realize the benefits, challenges, and current situation of NZE buildings. Research results indicate that the construction of NZE buildings is faced with a myriad of challenges, including technical issues, the lack of governmental and institutional supports, and the lack of standardized measures. The public awareness of NZE homes has been found to be very low, thus limiting the uptake and adoption of the new technologies used in this type of homes. The present study also recommends that the government and the academic institutions should strive to support the NZE building technology through curriculum changes, technological uptake, and financial incentives to buyers and developers. The implementation of these recommendations may enhance the success and popularity of NZE homes in the GTA.


2020 ◽  
Vol 12 (18) ◽  
pp. 7425
Author(s):  
Seongmin Kang ◽  
Joonyoung Roh ◽  
Eui-chan Jeon

The greenhouse gas emissions of the waste incineration sector account for approximately 43% of the total GHG emissions and represent the majority of the CO2 emissions from waste in Korea. Improving the reliability of the GHG inventory of the waste incineration sector is an important aspect for the examination of global GHG emission management according to the Paris Agreement. In this study, we introduced a statistical approach to analyze seasonal changes through analysis of waste composition and CO2 concentration in Municipal Solid Waste incinerators and applied the methodology to one case study facility. The analysis results in the case study showed that there was no seasonal variation in waste composition and CO2 concentrations, except for wood. Wood is classified as biomass, and the GHG emissions caused by biomass incineration are reported separately, indicating that the effect of an MSW incinerator on GHG emissions is not significant. Therefore, the seasonal effect of CO2 concentration or waste composition may not be an impact when calculating GHG emissions from case study facilities’ MSW incinerators. This study proposed an approach for analyzing factors that affect the GHG inventory reliability by analyzing seasonal characteristics and variation through the statistical analysis, which are used for the calculation of the GHG emissions of an MSW incinerator.


2021 ◽  
Author(s):  
Brandon Wilbur

Whole-building model optimizations have been performed for a single-detached house in 5 locations with varying climates, electricity emissions factors, and energy costs. The multi-objective optimizations determine the life-cycle cost vs. operational greenhouse gas emissions Pareto front to discover the 30-year life-cycle least-cost building design heated 1) with natural gas, and 2) electrically using a) central air-source heat pump, b) ductless mini-split heat pump c)ground-source heat pump, and d) electric baseboard, accounting for both initial and operational energy-related costs. A net-zero carbon design with grid-tied photovoltaics is also optimized. Results indicate that heating system type influences the optimal enclosure design, and that neither building total energy use, nor space heating demand correspond to GHG emissions across heating system types. In each location, at least one type of all-electric design has a lower life-cycle cost than the optimized gas-heated model, and such designs can mitigate the majority of operational GHG emissions from new housing in locations with a low carbon intensity electricity supply.


2019 ◽  
Vol 7 (3) ◽  
pp. 24-37
Author(s):  
Najum us Saqib ◽  
Asim Yaqub ◽  
Gomal Amin ◽  
Imran Khan ◽  
Huma Ajab ◽  
...  

Abstract The northern area of Pakistan, Gilgit Baltistan (GB), has huge tourist potential due to its exotic mountain beauty. According to the GB Tourism Department, a large number of tourists (around 200651) visit GB every year from across the country. Due to a large influx of tourists in the area both positive and negative impacts have been felt especially on the environment and on the local communities. The environmental impacts of tourism were investigated in this research in two districts of GB. Three villages were selected from each of the districts of Hunza and Diamer as the basis of this research. This study was based on the perceptions and attitudes of the respondents. The total number of questionnaires completed was 340 filled from different respondent categories. Results showed that deforestation, loss of biodiversity, generation of solid waste, water, air and noise pollution, damage cultural and heritage sites and are the main environmental issues caused by tourism activities in the villages in these districts. About 42% of respondents said that deforestation and loss of biodiversity were high in the Diamer district while in Hunza 39% of respondents said that solid waste generation was high. Similarly, 21% respondents in Hunza and 14% respondents in Diamer agreed that water pollution is caused by tourism activities. Microbial analysis of water confirmed the presence of Salmonella typhi, E. coli and Enterobacter sp. There were positive impacts of tourism with results revealing that 87% of villagers and 98% of businessmen responded that tourism had provided them with jobs and business during the peak tourism season. Hotels and restaurants are the main source of jobs in GB mainly as porters and guides. According to the data collected dry fruits, medicinal herbs, gemstones and handicrafts provided considerable attractions for tourists. It is recommended that a combined effort be made by the local communities, tourism departments and other Govt. Agencies to ensure the cleanliness of tourist attractions.


2021 ◽  
Author(s):  
Tom M. L. Wigley

Abstract This paper provides an assessment of Article 4.1 of the Paris Agreement on climate; the main goal of which is to provide guidance on how “to achieve the long-term temperature goal set out in Article 2”. Paraphrasing, Article 4.1 says that, to achieve this end, we should decrease greenhouse gas (GHG) emissions so that net anthropogenic GHG emissions fall to zero in the second half of this century. To aggregate net GHG emissions, 100-year Global Warming Potentials (GWP-100) are commonly used to convert non-CO2 emissions to equivalent CO2 emissions. As a test case using methane, temperature projections using GWP-100 scaling are shown to be seriously in error. This throws doubt on the use of GWP-100 scaling to estimate net GHG emissions. An alternative method to determine the net-zero point for GHG emissions based on radiative forcing is derived. This shows that the net-zero point needs to be reached as early as 2036, much sooner than in the Article 4.1 window. Other scientific flaws in Article 4.1 that further undermine its purpose to guide efforts to achieve the Article 2 temperature targets are discussed.


2021 ◽  
Vol 47 (2) ◽  
pp. 332-348
Author(s):  
Tariq Umar

Reduction in emissions is the key to tackle climate change issues and achieve environmental sustainability. The Gulf Cooperation Council member countries however, not only generate the highest quantity of MSW/capita when compared globally but also in most of these countries such waste is just dumped at different landfill stations. In Oman, the total quantity of MSW stood at 2.0 million tonnes/year. The emission from this waste is estimated at 2,989,467 tonnes/year (CO2 Equivalent). This article attempts to develop frameworks that considered landfilling, composting, and recycling of MSW and compared the emissions of these frameworks. The framework (F2) which proposes the landfilling and composting process for the organic waste which normally goes to landfills results in an increase of emissions by 7% as compared to landfill practice. Similarly, the samples of MSW collected in Oman show a good amount of recycling waste. The framework (F3) which considers the landfill, composting, and recycling reduced the total Greenhouse Gas emissions from 2,989,467 tonnes/year to 2,959,735 tonnes/year (CO2 Equivalent); representing a total reduction of 1% in emissions. Although composting increases the emissions, however, considering composting and recycling will not only reduce the burden on landfills but will promote agricultural and industrial activates.


Significance LNG is cleaner than most fossil fuels but still incompatible with net zero emissions. India, China and other Asian economies see LNG imports as a ready and economically viable means of displacing coal and oil use. Natural gas and then LNG demand will eventually peak as the energy transition accelerates over the next 20 years. Impacts LNG market growth will embed fossil fuel use and infrastructure in developing economies’ energy mixes. Recent market volatility and record spot LNG prices may reverse the trend of greater reliance on spot transactions than long-term contracts. Although the greenhouse gas (GHG) benefits of LNG use in transport are far from clear, it will gain market share in the next few years. LNG project developers will seek to cut GHG emissions from their projects to prolong LNG's attractiveness in the energy transition.


Author(s):  
Cody Taylor ◽  
Emily Bedwell ◽  
Amy Guy ◽  
David Traeger

As awareness regarding the potential threat of climate change has grown in the US, many local governments and businesses are being asked to consider the climate implications of their actions. In addition, many leaders, including solid waste managers, who are not yet pressured from the outside, consider it prudent to account for their greenhouse gas (GHG) emissions and consider it a proactive measure to assess climate risks and opportunities and to show commitment to progress. Sources of GHG emissions in the solid waste management process include: waste transport vehicles, composting facilities, processing equipment, landfills, and waste-to-energy facilities. Over the past 25 years, the levels of GHG emissions have been reduced through technological advancements in waste-to-energy, environmental regulations such as the Clean Air Act, landfill gas capture and control, and the promotion of recycling and reuse. There are many opportunities for solid waste managers to further reduce their GHG emissions levels, including promotion of waste-to-energy facilities as part of a low-carbon solid waste management plan. Waste-to-energy may also, in the future, offer potential revenue from the sale of renewable energy credits and carbon credits in emerging emissions trading programs.


Author(s):  
David Traeger ◽  
John Nelson ◽  
Robert Zorbaugh

HDR partnered with the Lancaster County Solid Waste Management Authority (Authority) to use the Carbon Assessment Planning Tool (CAPT) to evaluate GHG emissions in their solid waste system. The Authority owns three primary facilities, which comprise the Authority’s solid waste processing and disposal system (the System). The primary facilities in the System are the Transfer Station (TS), the Frey Farm Landfill (FFLF) and the Lancaster County Resource Recovery Facility (RRF). The Authority has recently added wind turbines to its energy portfolio and is considering other changes within its system. The model will be used to evaluate the net effect of the changing system characteristics on the Green House Gas emissions from the system. Reduction in the waste landfilled, changes in Landfill Gas production and increases in energy production will all be evaluated. The paper will review the model assumptions and parameters and will discuss system characteristics. The paper will also discuss a methodology for monetization of additional “green benefits” associated with the GHG emissions reductions through the sale of emission offsets.


Author(s):  
Brian Bahor ◽  
Keith Weitz ◽  
Andrew Szurgot

Municipal solid waste (MSW) management is internationally recognized for its potential to be both a source and mitigation technology for greenhouse gas (GHG) emissions. Historically, GHG emission estimates have relied upon quantitative knowledge of various MSW components and their carbon contents, information normally presented in waste characterization studies. Aside from errors associated with such studies, existing data do not reflect changes over time or from location to location and are therefore limited in their utility for estimating GHG emissions and mitigation due to proposed projects. This paper presents an alternative approach to estimate GHG emissions and mitigation using the concept of a carbon balance, where key carbon quantities are determined from operational measurements at modern municipal waste combustors (MWCs).


Sign in / Sign up

Export Citation Format

Share Document