scholarly journals Exofucosylation of Adipose Mesenchymal Stromal Cells Alters Their Secretome Profile

Author(s):  
David García-Bernal ◽  
Mariano García-Arranz ◽  
Ana I. García-Guillén ◽  
Ana M. García-Hernández ◽  
Miguel Blanquer ◽  
...  

Mesenchymal stromal cells (MSCs) constitute the cell type more frequently used in many regenerative medicine approaches due to their exclusive immunomodulatory properties, and they have been reported to mediate profound immunomodulatory effects in vivo. Nevertheless, MSCs do not express essential adhesion molecules actively involved in cell migration, a phenotypic feature that hampers their ability to home inflamed tissues following intravenous administration. In this study, we investigated whether modification by fucosylation of murine AdMSCs (mAdMSCs) creates Hematopoietic Cell E-/L-selectin Ligand, the E-selectin-binding CD44 glycoform. This cell surface glycan modification of CD44 has previously shown in preclinical studies to favor trafficking of mAdMSCs to inflamed or injured peripheral tissues. We analyzed the impact that exofucosylation could have in other innate phenotypic and functional properties of MSCs. Compared to unmodified counterparts, fucosylated mAdMSCs demonstrated higher in vitro migration, an altered secretome pattern, including increased expression and secretion of anti-inflammatory molecules, and a higher capacity to inhibit mitogen-stimulated splenocyte proliferation under standard culture conditions. Together, these findings indicate that exofucosylation could represent a suitable cell engineering strategy, not only to facilitate the in vivo MSC colonization of damaged tissues after systemic administration, but also to convert MSCs in a more potent immunomodulatory/anti-inflammatory cell therapy-based product for the treatment of a variety of autoimmune, inflammatory, and degenerative diseases.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rosario Hervás-Salcedo ◽  
María Fernández-García ◽  
Miriam Hernando-Rodríguez ◽  
Oscar Quintana-Bustamante ◽  
Jose-Carlos Segovia ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) constitute one of the cell types most frequently used in cell therapy. Although several studies have shown the efficacy of these cells to modulate inflammation in different animal models, the results obtained in human clinical trials have been more modest. Here, we aimed at improving the therapeutic properties of MSCs by inducing a transient expression of two molecules that could enhance two different properties of these cells. With the purpose of improving MSC migration towards inflamed sites, we induced a transient expression of the C-X-C chemokine receptor type 4 (CXCR4). Additionally, to augment the anti-inflammatory properties of MSCs, a transient expression of the anti-inflammatory cytokine, interleukin 10 (IL10), was also induced. Methods Human adipose tissue-derived MSCs were transfected with messenger RNAs carrying the codon-optimized versions of CXCR4 and/or IL10. mRNA-transfected MSCs were then studied, first to evaluate whether the characteristic phenotype of MSCs was modified. Additionally, in vitro and also in vivo studies in an LPS-induced inflamed pad model were conducted to evaluate the impact associated to the transient expression of CXCR4 and/or IL10 in MSCs. Results Transfection of MSCs with CXCR4 and/or IL10 mRNAs induced a transient expression of these molecules without modifying the characteristic phenotype of MSCs. In vitro studies then revealed that the ectopic expression of CXCR4 significantly enhanced the migration of MSCs towards SDF-1, while an increased immunosuppression was associated with the ectopic expression of IL10. Finally, in vivo experiments showed that the co-expression of CXCR4 and IL10 increased the homing of MSCs into inflamed pads and induced an enhanced anti-inflammatory effect, compared to wild-type MSCs. Conclusions Our results demonstrate that the transient co-expression of CXCR4 and IL10 enhances the therapeutic potential of MSCs in a local inflammation mouse model, suggesting that these mRNA-modified cells may constitute a new step in the development of more efficient cell therapies for the treatment of inflammatory diseases.


Author(s):  
Mariana A. Antunes ◽  
Cassia L. Braga ◽  
Tainá B. Oliveira ◽  
Jamil Z. Kitoko ◽  
Ligia L. Castro ◽  
...  

Although bone marrow-derived mesenchymal stromal cells (BM-MSCs) from patients with chronic obstructive pulmonary disease (COPD) appear to be phenotypically and functionally similar to BM-MSCs from healthy sources in vitro, the impact of COPD on MSC metabolism and mitochondrial function has not been evaluated. In this study, we aimed to comparatively characterize MSCs from healthy and emphysematous donors (H-MSCs and E-MSCs) in vitro and to assess the therapeutic potential of these MSCs and their extracellular vesicles (H-EVs and E-EVs) in an in vivo model of severe emphysema. For this purpose, C57BL/6 mice received intratracheal porcine pancreatic elastase once weekly for 4 weeks to induce emphysema; control animals received saline under the same protocol. Twenty-four hours after the last instillation, animals received saline, H-MSCs, E-MSCs, H-EVs, or E-EVs intravenously. In vitro characterization demonstrated that E-MSCs present downregulation of anti-inflammatory (TSG-6, VEGF, TGF-β, and HGF) and anti-oxidant (CAT, SOD, Nrf2, and GSH) genes, and their EVs had larger median diameter and lower average concentration. Compared with H-MSC, E-MSC mitochondria also exhibited a higher respiration rate, were morphologically elongated, expressed less dynamin-related protein-1, and produced more superoxide. When co-cultured with alveolar macrophages, both H-MSCs and E-MSCs induced an increase in iNOS and arginase-1 levels, but only H-MSCs and their EVs were able to enhance IL-10 levels. In vivo, emphysematous mice treated with E-MSCs or E-EVs demonstrated no amelioration in cardiorespiratory dysfunction. On the other hand, H-EVs, but not H-MSCs, were able to reduce the neutrophil count, the mean linear intercept, and IL-1β and TGF-β levels in lung tissue, as well as reduce pulmonary arterial hypertension and increase the right ventricular area in a murine model of elastase-induced severe emphysema. In conclusion, E-MSCs and E-EVs were unable to reverse cardiorespiratory dysfunction, whereas H-EVs administration was associated with a reduction in cardiovascular and respiratory damage in experimental severe emphysema.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Pavla Tonarova ◽  
Katerina Lochovska ◽  
Robert Pytlik ◽  
Marie Hubalek Kalbacova

In vitro and in vivo analyses are closely connected, and the reciprocal relationship between the two comprises a key assumption with concern to the conducting of meaningful research. The primary purpose of in vitro analysis is to provide a solid background for in vivo and clinical study purposes. The fields of cell therapy, tissue engineering, and regenerative medicine depend upon the high quality and appropriate degree of the expansion of mesenchymal stromal cells (MSCs) under low-risk and well-defined conditions. Hence, it is necessary to determine suitable alternatives to fetal bovine serum (FBS—the laboratory gold standard) that comply with all the relevant clinical requirements and that provide the appropriate quantity of high-quality cells while preserving the required properties. Human serum (autologous and allogeneic) and blood platelet lysates and releasates are currently considered to offer promising and relatively well-accessible MSC cultivation alternatives. Our study compared the effect of heat-inactivated FBS on MSC metabolism as compared to its native form (both are used as the standard in laboratory practice) and to potential alternatives with concern to clinical application—human serum (allogeneic and autologous) or platelet releasate (PR-SRGF). The influence of the origin of the serum (fetal versus adult) was also determined. The results revealed the key impact of the heat inactivation of FBS on MSCs and the effectiveness of human sera and platelet releasates with respect to MSC behaviour (metabolic activity, proliferation, morphology, and cytokine production).


Blood ◽  
2010 ◽  
Vol 115 (8) ◽  
pp. 1549-1553 ◽  
Author(s):  
Karin Tarte ◽  
Julien Gaillard ◽  
Jean-Jacques Lataillade ◽  
Loic Fouillard ◽  
Martine Becker ◽  
...  

Abstract Clinical-grade human mesenchymal stromal cells (MSCs) have been expanded in vitro for tissue engineering or immunoregulatory purposes without standardized culture conditions or release criteria. Although human MSCs show poor susceptibility for oncogenic transformation, 2 recent studies described their capacity to accumulate chromosomal instability and to give rise to carcinoma in immunocompromised mice after long-term culture. We thus investigated the immunologic and genetic features of MSCs expanded with fetal calf serum and fibroblast growth factor or with platelet lysate in 4 cell-therapy facilities during 2 multicenter clinical trials. Cultured MSCs showed a moderate expression of human leukocyte antigen-DR without alteration of their low immunogenicity or their immunomodulatory capacity. Moreover, some transient and donor-dependent recurring aneuploidy was detected in vitro, independently of the culture process. However, MSCs with or without chromosomal alterations showed progressive growth arrest and entered senescence without evidence of transformation either in vitro or in vivo.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 726
Author(s):  
Mairead Hyland ◽  
Claire Mennan ◽  
Emma Wilson ◽  
Aled Clayton ◽  
Oksana Kehoe

Umbilical cord mesenchymal stromal cells (UCMSCs) have shown an ability to modulate the immune system through the secretion of paracrine mediators, such as extracellular vesicles (EVs). However, the culture conditions that UCMSCs are grown in can alter their secretome and thereby affect their immunomodulatory potential. UCMSCs are commonly cultured at 21% O2 in vitro, but recent research is exploring their growth at lower oxygen conditions to emulate circulating oxygen levels in vivo. Additionally, a pro-inflammatory culture environment is known to enhance UCMSC anti-inflammatory potential. Therefore, this paper examined EVs from UCMSCs grown in normal oxygen (21% O2), low oxygen (5% O2) and pro-inflammatory conditions to see the impact of culture conditions on the EV profile. EVs were isolated from UCMSC conditioned media and characterised based on size, morphology and surface marker expression. EV protein cargo was analysed using a proximity-based extension assay. Results showed that EVs had a similar size and morphology. Differences were found in EV protein cargo, with pro-inflammatory primed EVs showing an increase in proteins associated with chemotaxis and angiogenesis. This showed that the UCMSC culture environment could alter the EV protein profile and might have downstream implications for their functions in immunomodulation.


2021 ◽  
Vol 55 (5) ◽  
pp. 45-52
Author(s):  
O.Yu. Alekseeva ◽  
◽  
P.I. Bobyleva ◽  
E.R. Andreeva ◽  
◽  
...  

We studied interactions of mesenchymal stromal cells (MSCs) and cells from the monocyte-macrophage group (MN/MP) important in the MSCs mediated therapeutic action in vivo, their anti-inflammatory and immunomodulating properties. The MSCs effect on the MN/MP functional activity was evaluated after a 6-d co-culture in standard conditions (20 % О2) and ensuing exposure of one part of MN/MP and MN/MP+MSCs to a long-term hypoxic stress (1 % О2, 24 hrs) while the other part remained at 20 % О2. As in the normal, so hypoxic conditions the MSCs stromal activity contributed to the MN/MP viability by decreasing the numbers of MN/MP cells during early apoptosis. The paracrine interaction in 20 % О2 occurred with an elevated MN/MP phagocytic activity without influence on the lysosomal compartment activity. The hypoxic stress affected the MSCs-induced phagocytic ability and activity of lysosomes. Interaction with MSCs leads to formation of a MN/MP anti-inflammatory phenotype that unveils the phagocytic potential in the presence of MSCs despite the oxygen deprivation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wuyang Huang ◽  
Ky Young Cho ◽  
Di Meng ◽  
W. Allan Walker

AbstractAn excessive intestinal inflammatory response may have a role in the pathogenesis of necrotizing enterocolitis (NEC) in very preterm infants. Indole-3-lactic acid (ILA) of breastmilk tryptophan was identified as the anti-inflammatory metabolite involved in probiotic conditioned media from Bifidobacteria longum subsp infantis. This study aimed to explore the molecular endocytic pathways involved in the protective ILA effect against inflammation. H4 cells, Caco-2 cells, C57BL/6 pup and adult mice were used to compare the anti-inflammatory mechanisms between immature and mature enterocytes in vitro and in vivo. The results show that ILA has pleiotropic protective effects on immature enterocytes including anti-inflammatory, anti-viral, and developmental regulatory potentials in a region-dependent and an age-dependent manner. Quantitative transcriptomic analysis revealed a new mechanistic model in which STAT1 pathways play an important role in IL-1β-induced inflammation and ILA has a regulatory effect on STAT1 pathways. These studies were validated by real-time RT-qPCR and STAT1 inhibitor experiments. Different protective reactions of ILA between immature and mature enterocytes indicated that ILA’s effects are developmentally regulated. These findings may be helpful in preventing NEC for premature infants.


2019 ◽  
Vol 25 (37) ◽  
pp. 4946-4967 ◽  
Author(s):  
Anna K. Kiss ◽  
Jakub P. Piwowarski

The popularity of food products and medicinal plant materials containing hydrolysable tannins (HT) is nowadays rapidly increasing. Among various health effects attributable to the products of plant origin rich in gallotannins and/or ellagitannins the most often underlined is the beneficial influence on diseases possessing inflammatory background. Results of clinical, interventional and animal in vivo studies clearly indicate the antiinflammatory potential of HT-containing products, as well as pure ellagitannins and gallotannins. In recent years a great emphasis has been put on the consideration of metabolism and bioavailability of natural products during examination of their biological effects. Conducted in vivo and in vitro studies of polyphenols metabolism put a new light on this issue and indicate the gut microbiota to play a crucial role in the health effects following their oral administration. The aim of the review is to summarize the knowledge about HT-containing products’ phytochemistry and their anti-inflammatory effects together with discussion of the data about observed biological activities with regards to the current concepts on the HTs’ bioavailability and metabolism. Orally administered HT-containing products due to the limited bioavailability of ellagitannins and gallotannins can influence immune response at the level of gastrointestinal tract as well as express modulating effects on the gut microbiota composition. However, due to the chemical changes being a result of their transit through gastrointestinal tract, comprising of hydrolysis and gut microbiota metabolism, the activity of produced metabolites has to be taken into consideration. Studies regarding biological effects of the HTs’ metabolites, in particular urolithins, indicate their strong and structure-dependent anti-inflammatory activities, being observed at the concentrations, which fit the range of their established bioavailability. The impact of HTs on inflammatory processes has been well established on various in vivo and in vitro models, while influence of microbiota metabolites on silencing the immune response gives a new perspective on understanding anti-inflammatory effects attributed to HT containing products, especially their postulated effectiveness in inflammatory bowel diseases (IBD) and cardiovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document